$$
\begin{aligned}
& 5680 \\
& H W 4 \\
& \text { Past } 2 \\
& \text { Solutions }
\end{aligned}
$$

(1) (a)

Note that both $e^{z}-1$ and $\sin (z)$ are analytic at $z_{0}=0$.
Their power series expansions there are

$$
\begin{aligned}
e^{z}-1=-1+e^{z} & =-1+\left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right) \\
& =z\left(1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots\right) \\
& =z \varphi_{1}(z)
\end{aligned}
$$

where $\varphi_{1}(0)=1+\frac{0}{2!}+\frac{0^{2}}{3!}+\cdots=1 \neq 0$.
Thus, $e^{z}-1$ has a zero of order 1 at $z_{0}=0$.
And about $z_{0}=0$ we have

$$
\begin{aligned}
& d \text { about } z_{0}=0 \text { we have } \\
& \begin{aligned}
& \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots \\
&=z\left(1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\frac{z^{6}}{7!}+\cdots\right) \\
&=z \varphi_{2}(z) \\
& 0^{4} 0^{6}=1 \neq
\end{aligned}
\end{aligned}
$$

where $\varphi_{2}(0)=1-\frac{0^{2}}{3!}+\frac{0^{4}}{5!}-\frac{0^{6}}{7!}+\cdots=1 \neq 0$

Thus, $\sin (z)$ has a zero of order 1 at $z_{0}=0$.
Since $e^{z}-1$ and $\sin (z)$ are both analytic and they both have zeros of orden 1 at $z_{0}=0$, by a theorem from class

$$
f(z)=\frac{e^{z}-1}{\sin (z)}
$$

has a removable singularity at $z_{0}=0$.
Thus, $\operatorname{Res}(f ; 0)=0$.
If you wanted to you could also write

$$
\frac{e^{z}-1}{\sin (z)}=\frac{\left(z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right)}{\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right)}=\frac{\left(1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots\right)}{\left(1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots\right)}
$$

and then dividing denominator into numerator to find the power series expansion at $z_{0}=0$.
(1) (b)

Method 1

$$
f(z)=\frac{1}{e^{z}-1}=\frac{g(z)}{h(z)}
$$

where $g(z)=1$ and $h(z)=e^{z}-1$.
The numerator satisfies $g(0)=1 \neq 0$.
The denomerator satisfies $h(0)=e^{0}-1=1-1=0$.
Also, $h(z)=e^{z}-1$ is analytic at $z_{0}=0$ with power series expansion

$$
\begin{aligned}
h(z) & =e^{z}-1 \\
= & -1+\left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right) \\
& =z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& =z(\underbrace{\left.1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots\right)}_{\text {let this be } \varphi(z)}=z \varphi(z)
\end{aligned}
$$

where $\varphi(z)$ is analytic at $z_{0}=0$ and

$$
\begin{aligned}
& \text { z) is analytic } \\
& \varphi(0)=1+\frac{0}{2!}+\frac{0^{2}}{3!}+\cdots=1 \neq 0
\end{aligned}
$$

So, $f(z)=\frac{1}{e^{z}-1}$ where the numerator has nozere at $z_{0}=0$ and the denominator has a zero at $z_{0}=0$ of order 1 . By a theorem from class
f has a pole of order 1 at $z_{0}=0$
And

$$
\begin{aligned}
& \text { And } \\
& \operatorname{Res}(f ; 0)=\lim _{z \rightarrow 0}(z-0) f(z) \\
&=\lim _{z \rightarrow 0} \frac{z}{e^{z}-1} \\
&=\lim _{z \rightarrow 0} \frac{z}{z \varphi(z)} \\
&=\lim _{z \rightarrow 0} \frac{1}{\varphi(z)} \\
&=\frac{1}{\left(1+\frac{0}{2!}+\frac{0^{2}}{3!}+\cdots\right)}=\frac{1}{1}=1
\end{aligned}
$$

(1) (b)

Method 2
Here we have $f(z)=\frac{1}{e^{z}-1}$
and the numerator is not 0 at $z_{0}=0$ but the denominator is, ie $e^{0}-1=1-1=0$. So we will have either a pole of order m at $z_{0}=0$ or an essential singularity there. let's divide the numerator by the denominator to get the Laurent series at $z_{0}=0$.
We know $e^{z}-1=-1+\left(1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right)$

$$
=z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots
$$

Thus, \downarrow

$$
\begin{array}{r}
\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right) \frac{1}{z}-\frac{1}{2}+\frac{1}{12} z+\cdots \\
\frac{-\left(1+\frac{z}{2}+\frac{z^{2}}{6}+\frac{z^{3}}{24}+\cdots\right)}{\frac{-\frac{z}{2}-\frac{z^{2}}{6}-\frac{z^{3}}{24}-\cdots}{}} \begin{array}{c}
\frac{-\left(-\frac{z}{2}-\frac{z^{2}}{4}-\frac{z^{3}}{12}-\cdots\right)}{\frac{1}{12} z^{2}+\frac{1}{24} z^{3}+\cdots} \\
\frac{-\left(\frac{1}{12} z^{2}+\cdots\right)}{\vdots}
\end{array}
\end{array}
$$

So, in a deleted neighborhood of $z_{0}=0$ we have

$$
\begin{aligned}
& \text { of } z_{0}=0 \text { we have } \\
& f(z)=\frac{1}{e^{z}-1}=\frac{1}{z}-\frac{1}{2}+\frac{1}{12} z+\cdots
\end{aligned}
$$

So we have a pole of orden 1 with $\operatorname{Res}(f ; 0)=1$.
(1) (c) $f(z)=\frac{z+2}{z^{2}-2 z}$ at $z_{0}=0$

Note that the numerator $z+2$ has no zero at $z_{0}=0$ since $0+2=2 \neq 0$.
The denominator has a zero at $z_{0}=0$ Since $0^{2}-2 \cdot 0=0$. It has a zero of order 1 since

$$
z^{2}-2 z=\sum_{\lambda}^{z} \underbrace{(z-2)}_{n_{0}+0 \text { at } z_{0}=0}
$$

zero of

$$
c^{c r o n} 7 \text { of } 0 \text {. }
$$

So we will have a simple pole at $z_{0}=0$, ie a pole of order 1 .
Another way to see this is to notice that

$$
f(z)=\frac{z+2}{z^{2}-2 z}=\frac{\left(\frac{z+2}{z-2}\right)}{z}=\frac{\varphi(z)}{z}
$$

Where $\varphi(z)=\frac{z+2}{z-2}$ is analytic at $z_{0}=0$ and $\varphi(0)=\frac{0+2}{0-2}=-1 \neq 0$

So, we have a pole of order 1 at $z_{0}=0$.
Furthermore, from a theorem in class

$$
\operatorname{Res}(f ; 0)=\varphi(0)=-1
$$

Class tho: Suppose f has a pole of coder m at z_{0} and $f(z)=\frac{\varphi(z)}{\left(z-z_{0}\right)^{m}}$
is some deleted neighborhood of z_{0} and φ is analytic at z_{0} and $\varphi\left(z_{0}\right) \neq 0$.
If $m=1$, then $\operatorname{Res}\left(f ; z_{0}\right)=\varphi\left(z_{0}\right)$
If $m \geqslant 2$, then $\operatorname{Res}\left(f ; z_{0}\right)=\frac{\varphi^{(m-1)}\left(z_{0}\right)}{(m-1)!}$
(1) (d)

Let $D=D(1 ; 2)$.
Let $z \in D(1 ; 2)-\{1\}$.
Then,

Where $\varphi(z)$ is analytic at $z_{0}=1$, indeed in all of D. And $\varphi(1) \neq 0$.

By the the in class [which is also written down in the solutions for problem $1(c)$] we have that f has a pole of order 2 at $z_{0}=1$ and

$$
\begin{aligned}
\operatorname{Res}(f ; 1) & =\frac{\varphi^{(2-1)}(1)}{(2-1)!} \\
& =\frac{\varphi^{(1)}(1)}{1!}=\varphi^{\prime}(1)
\end{aligned}
$$

Note that $\varphi^{\prime}(z)=\frac{e^{z}(z+1)^{2}-2(z+1) e^{z}}{(z+1)^{4}}$
So,

$$
\begin{aligned}
\operatorname{Res}(f ; 1)=\varphi^{\prime}(1) & =\frac{e^{\prime}(1+1)^{2}-2(1+1) e^{1}}{(1+1)^{4}} \\
& =\frac{4 e-4 e}{2}=0
\end{aligned}
$$

(1) (e)

$$
f(z)=\frac{e^{z^{2}}}{(z-1)^{4}}=\frac{\varphi(z)}{(z-1)^{4}}
$$

where φ is analytic at $z_{0}=1$ and $\phi(1)=e^{1^{2}} \neq 0$.
By a the in class, we have a pole of order $m=4$ and

$$
\operatorname{Res}(f ; 1)=\frac{\varphi^{(4-1)}(1)}{(4-1)!}=\frac{\phi^{(3)}(1)}{3!}
$$

We have $\varphi(z)=e^{z^{2}}$

$$
\begin{aligned}
\varphi(z) & =e \\
\varphi^{\prime}(z) & =2 z e^{z^{2}} \\
\varphi^{\prime \prime}(z) & =2 e^{z^{2}}+2 z\left(e^{z^{2}} \cdot 2 z\right) \\
& =2 e^{z^{2}}+4 z^{2} e^{z^{2}} \\
\varphi^{\prime \prime \prime}(z) & =2 \cdot 2 z e^{z^{2}}+8 z e^{z^{2}}+4 z^{2}\left(e^{z^{2}} \cdot 2 z\right) \\
& =4 z e^{z^{2}}+8 z e^{z^{2}}+8 z^{3} e^{z^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Sos}(f ; 1)=\frac{q^{\prime \prime \prime}(1)}{6} & =\frac{4(1) e^{\prime}+8(1) e^{\prime}+8(1) e^{1}}{6}=\frac{20 e}{6} \\
& =\frac{10}{3} e
\end{aligned}
$$

(1) (f)

In this case

$$
f(z)=\frac{z^{2}}{z^{4}-1}=\frac{g(z)}{h(z)}
$$

where $g(z)=z^{2}$ and $h(z)=z^{4}-1$.
Here we have $g(i)=i^{-2}=-1 \neq 0$
And $h(i)=i^{4}-1=1-1=0$.
Also, $h^{\prime}(z)=4 z^{3}$ and so $h^{\prime}(i)=4 i^{3}=-4 i$
So, $g(i) \neq 0, h(i)=0, h^{\prime}(i) \neq 0$.
By a the from class $z_{0}=i$ is a simple pole of f and

$$
\begin{aligned}
\operatorname{Res}(f ; 1)=\frac{g(i)}{h^{\prime}(i)} & =\frac{i^{2}}{-4}=\frac{-1}{-4 i} \\
& =\frac{1}{4} \cdot \frac{1}{i}=\frac{1}{4}(-i)=\frac{-i}{4}
\end{aligned}
$$

(1)(9) If $z \neq 0$ but near 0 , then

$$
\begin{aligned}
& \text { (1)(g) If } z \neq 0 \text { but near 0, then } \\
& \begin{aligned}
f(z) & =\left(\frac{\cos (z)-1}{z}\right)^{2}=\left(\frac{-1+\cos (z)}{z}\right)^{2} \\
& =\left(\frac{-1+1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots}{z}\right)^{2} \\
& =\left(\frac{-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots}{z}\right)^{2} \\
& =\left(-\frac{z}{2!}+\frac{z^{3}}{4!}-\frac{z^{5}}{6!}+\cdots\right)^{2} \\
& =\frac{1}{4} z^{2}-\frac{1}{24} z^{4}+\cdots
\end{aligned}
\end{aligned}
$$

So we have a removable singularity at $z_{0}=0$. And

$$
\operatorname{Res}(f ; 0)=0
$$

(2) The singular points of $f(z)=\frac{1}{e^{z}-1}$ are when $e^{z}-1=0$ or $e^{z}=1$.
These are located at $z=2 \pi i k$ where $k \in \mathbb{Z}$

$$
f(z)=\frac{g(z)}{h(z)}
$$

where $g(z)=1, h(z)=e^{z}-1$. And, $h^{\prime}(z)=e^{z}$.
And $g(2 \pi i k)=1 \neq 0$,

$$
\begin{aligned}
& \text { And } g(2 \pi i k)=1 \neq 0 \text {, } \\
& h(2 \pi i k)=e^{2 \pi i k}-1, h^{\prime}(2 \pi i k)=e^{2 \pi i k}=1 \neq 0 .
\end{aligned}
$$

So, by a the in class these are all simple poles and

$$
\operatorname{Res}(f ; 2 \pi i k)=\frac{g(2 \pi i k)}{h^{\prime}(2 \pi i k)}=\frac{1}{1}=1
$$

(3) The singular points of $f(z)=\frac{1}{z^{3}-3}$ are when $z^{3}-3=0$.
Let's solve this:

$$
z^{3}=3=3 \cdot e^{0 i}
$$

Solutions are:

$$
\begin{aligned}
\text { Solutions are: } \\
\begin{aligned}
z_{k} & =3^{1 / 3} e^{\left(\frac{0}{3}+\frac{2 \pi}{3} k\right) i} \\
& =3^{1 / 3} e^{\frac{2 \pi}{3} k i}, k=0,1,2 \\
& =3_{z_{0}}^{1 / 3}, \underbrace{3^{1 / 3} e^{\frac{2 \pi}{3} i}}_{z_{1}}, \underbrace{3^{1 / 3} e^{\frac{4 \pi}{3} i}}_{z_{2}}
\end{aligned}
\end{aligned}
$$

So, z_{0}, z_{1}, z_{2} are the singularities of $f(z)$.
Let $g(z)=1, h(z)=z^{3}-3$.
Then, $f(z)=\frac{g(z)}{h(z)}$.
And $h^{\prime}(z)=3 z^{2}$.

Note that

$$
\begin{aligned}
& g\left(z_{0}\right)=1 \neq 0 \\
& h\left(z_{0}\right)=0 \\
& h^{\prime}\left(z_{0}\right)=3\left(3^{1 / 3}\right)^{2}=3 \cdot 3^{2 / 3} \neq 0
\end{aligned}
$$

Thus, $z_{0}=3^{1 / 3}$ is a simple pole

$$
\begin{aligned}
& \text { Thus, } z_{0}=3 \\
& \text { and } \\
& \operatorname{Res}\left(f ; 3^{1 / 3}\right)=\frac{g\left(3^{1 / 3}\right)}{h^{\prime}\left(3^{1 / 3}\right)}=\frac{1}{3 \cdot 3^{2 / 3}}
\end{aligned}
$$

Also, $g\left(z_{1}\right)=1 \neq 0$

$$
\begin{aligned}
& h\left(z_{1}\right)=0 \\
& h^{\prime}\left(z_{1}\right)=3\left(3^{1 / 3} e^{\frac{2 \pi}{3} i}\right)^{2}=3 \cdot 3^{2 / 3} e^{\frac{4 \pi}{3} j} \neq 0
\end{aligned}
$$

So, z_{1} is a simple pole and

$$
\begin{aligned}
& \text { So, } z_{1} \text { is a simple } \\
& \operatorname{Res}\left(f ; z_{1}\right)=\frac{g\left(z_{1}\right)}{h^{\prime}\left(z_{1}\right)}=\frac{1}{3 \cdot 3^{2 / 3} e^{\frac{4 \pi}{3} i}}
\end{aligned}
$$

We also have

$$
\begin{aligned}
& g\left(z_{2}\right) \neq 0 \\
& \begin{aligned}
h\left(z_{2}\right) & =0 \\
h^{\prime}\left(z_{2}\right)=3\left(3^{1 / 3} e^{\frac{4 \pi i}{3}}\right)^{2} & =3 \cdot 3^{2 / 3} e^{\frac{8 \pi}{3} i} \\
& =3 \cdot 3^{2 / 3} e^{\frac{2 \pi}{3} i} \neq 0
\end{aligned}
\end{aligned}
$$

So, we have a simple pole at z_{2} and

$$
\begin{aligned}
\operatorname{Res}\left(f ; z_{2}\right) & =\frac{g\left(z_{2}\right)}{h^{\prime}\left(z_{2}\right)} \\
& =\frac{1}{3 \cdot 3^{2 / 3} \cdot e^{\frac{2 \pi}{3} i}}
\end{aligned}
$$

(4) Since f_{1} and f_{2} both have simple poles at z_{0} we know that there exists a disc D around z_{0}, and two functions $\varphi_{1}(z)$ and $\varphi_{2}(z)$ that we analytic in D,

$$
\varphi_{1}\left(z_{0}\right) \neq 0, \quad \varphi_{2}\left(z_{0}\right) \neq 0
$$

and for all $z \in D^{*}=D-\left\{z_{0}\right\}$ we have

$$
\begin{aligned}
& f_{1}(z)=\frac{\varphi_{1}(z)}{z-z_{0}} \text { and } \\
& f_{2}(z)=\frac{\varphi_{2}(z)}{z-z_{0}} .
\end{aligned}
$$

Thus, for $z \in D^{*}$ we have

$$
\left(f_{1} f_{2}\right)(z)=\frac{\varphi_{1}(z) \varphi_{2}(z)}{\left(z-z_{0}\right)^{2}}
$$

Where $\varphi_{1}(z) \cdot \varphi_{2}(z)$ is analytic in D, ie at $z=z_{0}$, and $\varphi_{1}\left(z_{0}\right) \cdot \varphi_{2}\left(z_{0}\right) \neq 0$.
Thus, we have a pole of 2 at $z=z_{0}$ and so,

$$
\begin{aligned}
& \text { at } z=z_{0} \text { and so, } \\
& \begin{aligned}
\operatorname{Res}\left(f ; z_{0}\right) & =\frac{\left.\left(\left[\varphi_{1}(z) \varphi_{2}(z)\right]^{\prime}\right)\right|_{z=z_{0}}}{1!} \\
& =\varphi_{1}^{\prime}\left(z_{0}\right) \varphi_{2}\left(z_{0}\right)+\varphi_{1}\left(z_{0}\right) \varphi_{2}^{\prime}\left(z_{0}\right)
\end{aligned}
\end{aligned}
$$

