5680 HW 4 Part 2 Solutions

 $()(\alpha)$

Note that both $e^{\frac{2}{e}}$ | and $sin(\frac{2}{e})$ are analytic at $z_0=0$. Their power series expansions there are $e^{\frac{2}{e}}$ | = -|+ $e^{\frac{2}{e}}$ = -|+ $(1+\frac{2}{2!}+\frac{2^{\frac{3}{2}}}{3!}+\cdots)$ = $z(1+\frac{2}{2!}+\frac{2^{\frac{3}{2}}}{3!}+\cdots)$

 $= Z \varphi_{i}(Z)$ where $\varphi_1(0) = |+ \frac{1}{2!} + \frac{1}{3!} + \dots = | \neq 0$. Thus, e²-1 has a zero of order I at Zo=0. And about Zo=0 we have $Sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{2!} + \cdots$ $= Z \left(\left| -\frac{z^{2}}{3!} + \frac{z^{4}}{5!} - \frac{z^{6}}{7!} + \cdots \right) \right.$ $= z \varphi_{2}(z)$ where $\varphi_{2}(o) = \left| -\frac{0^{2}}{3!} + \frac{0^{4}}{5!} - \frac{0^{6}}{7!} + \dots = \left| \neq 0 \right|$

Thus, sin(z) has a zero of order Z Since et-1 and sin(z) are both analytic at $z_0 = 0$. and they both have teros of order I at Z.= 0, by a theorem from class $f(z) = \frac{e^{z}-1}{\sin(z)}$ has a removable singularity at z.=0. Thus, Res(f;0)=0. If you wanted to you could also write $e^{\frac{2}{2}} - \left(\frac{2}{2!} + \frac{2^{2}}{2!} + \frac{2^{3}}{2!} + \dots \right) - \left(1 + \frac{2}{2!} + \frac{2^{2}}{3!} + \dots \right)$ $\sin(z) \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - ... \right) \left(1 - \frac{z^2}{3!} + \frac{z^4}{5!} - ... \right)$ and then dividing denominator into numerator to find the power series expansion at Zo=0.

(I)(b) Method I) ९ (२) $f(z) = \frac{1}{e^z - 1}$ h(2) where g(z) = | and $h(z) = e^{z} - |$. The numerator satisfies $g(0) = 1 \neq 0$. The denomenator satisfies $h(0|=e^{-}|=|-|=0)$. Also, $h(z) = e^{z} - 1$ is analytic at $z_0 = 0$ with power series expansion $h(z) = e^{2} - |z - | + (|+z + \frac{z}{2!} + \frac{z}{3!} + \cdots)$ $= 2 + \frac{2^{2}}{2!} + \frac{2^{5}}{3!} + \cdots$ $= 2(1+\frac{2}{2}+\frac{2}{3}+\cdots) = 2\varphi(2)$ let this be $\varphi(z)$ where $\varphi(z)$ is analytic at $z_0 = 0$ and $\varphi(0) = 1 + \frac{2}{21} + \frac{2}{21} + \dots = 1 \neq 0$

So, $f(z) = \frac{1}{e^{z}-1}$ where the numerator has no zero at Zo=0 and the denominator has a zero at zo=0 of order I. By a theorem from class f has a pole of order 1 at Zo=0 $= \lim_{z \to 0} (z - 0) f(z)$ And Res (f; 0) $= \lim_{z \to 0} \frac{z}{c^2 - 1}$ = lim ZQ(21 Zto CZ φ(2] = |im 770 $= \frac{1}{(1+\frac{0}{2!}+\frac{0}{3!}+\cdots)} = \frac{1}{1} = 1.$ (J)(J)

Method 2 Here we have $f(z) = \frac{1}{p^2 - 1}$ and the numerator is not 0 at Z.=0 but the denominator is, ie c°-1=1-1=0. So we will have either a pole of order m at Zo=0 or an escential sinsularity there. let's divide the numerator by the denominator to get the Laurent series We know $e^{z} - 1 = -1 + (1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots)$ $= Z + \frac{Z^{2}}{2} + \frac{Z^{3}}{6} + \frac{Z^{4}}{24} + \dots$

Thus

$$\frac{\frac{1}{2} - \frac{1}{2} + \frac{1}{12}z + \cdots}{\left(2 + \frac{2}{2} + \frac{2}{6} + \frac{2}{24} + \cdots\right)\left(1 + \frac{2}{2} + \frac{2}{6} + \frac{2}{24} + \cdots\right)}{-\frac{2}{2} - \frac{2^{2}}{6} - \frac{2^{3}}{24} - \cdots} - \left(1 + \frac{2}{2} + \frac{2}{6} + \frac{2^{3}}{24} + \frac{2}{12} + \cdots\right) - \frac{2}{2} - \frac{2^{2}}{6} - \frac{2^{3}}{24} - \cdots}{-\left(-\frac{2}{2} - \frac{2^{3}}{4} - \frac{2^{3}}{12} - \cdots\right)}{\frac{1}{12}z^{2} + \frac{1}{24}z^{3} + \cdots} - \left(\frac{-\frac{1}{2}z^{2} + \frac{1}{24}z^{3} + \cdots}{\frac{1}{12}z^{2} + \frac{1}{24}z^{3} + \cdots}\right) - \frac{1}{2}z^{2} + \frac{1}{24}z^{3} + \cdots}{\frac{1}{12}z^{2} + \frac{1}{12}z^{3} + \cdots}$$

So, in a deleted neighborhood residue
of $z_{0} = 0$ we have
 $f(z) = \frac{1}{e^{z} - 1} = \frac{1}{z} - \frac{1}{2} + \frac{1}{12}z + \cdots$
So we have a pole of order T
with $\operatorname{Res}(f_{j}0) = 1$.

 $(f(z)) = \frac{z+2}{z^2-2z} \quad \text{at } z = 0$

Note that the numerator Z+Z has No zero $a + z_0 = 0$ since $0+2=2\neq 0$. The denuminatur has a zero at zo=0 Since $0^{2} - 2 \cdot 0 = 0$. It has a Zers of order I since $Z^{2} - 2Z = Z (Z - Z).$ $T \qquad not 0 \text{ at } Z_{s} = 0$ Z - 2Z = Z (Z - Z). $T \qquad not 0 \text{ at } Z_{s} = 0$ Z = 0 Z = 0So we will have a simple pole at Zo=0, ie a pole of order I. Another way to see this is to notice that $f(z) = \frac{Z+2}{Z^2-2z} = \frac{\left(\frac{Z+2}{Z-2}\right)}{Z} = \frac{\varphi(z)}{Z}$ Where $\varphi[z] = \frac{z+z}{z-z}$ is analytic at $z_0 = 0$ and $\varphi(0) = \frac{0+2}{0-2} = -1 \neq 0$

So, we have a pole of order 1 at 2.=0. Furthermore, from a theorem in class $\operatorname{Res}(f; 0) = \varphi(0) = -1.$ Class thm: Suppose f has a pole of order m at zo and $f(z) = \frac{\varphi(z)}{(z-z_0)}m$ Is some deleted neighborhood of 2. and φ is analytic at Z. and $\varphi(Z_0) \neq 0$. If m=1, then $\operatorname{Res}(f_{j}z_{o}) = \varphi(z_{o})$ If m=1, then $\text{Res}(f_{j}z_{o}) = \frac{q^{(m-1)}(z_{o})}{(m-1)!}$

Let
$$D = D(1;2)$$
.
Let $z \in D(1;2) - \{1\}$.
Then,
 $f(z) = \frac{e^{z}}{(z^{2}-1)^{z}} = \frac{e^{z}}{[(z+1)(z-1)]^{z}}$
 $= \frac{\left(\frac{e^{z}}{(z+1)^{z}}\right)}{(z-1)^{z}} = \frac{\varphi(z)}{(z-1)^{z}}$
where $\varphi(z)$ is analytic at $z = 1$,
where $\varphi(z)$ is analytic at $z = 1$,
 $\varphi(1) \neq 0$.

indeed in all

By the thm in class [which is also Written down in the solutions for problem ((c)) we have that t has a pole of order 2 at Zo=1 and $Res(f_{j}) = \frac{\varphi^{(2-1)}(1)}{(2-1)!}$ $=\frac{\varphi^{(1)}(1)}{1}=\varphi^{(1)}(1)$ Note that $\varphi'(z) = \frac{e^{z}(z+1)^{2} - 2(z+1)e^{z}}{(z+1)^{y}}$ So, $\operatorname{Res}(f_{j}) = \varphi'(1) = \frac{e'(1+1)^2 - 2(1+1)e}{(1+1)^4}$ $=\frac{4e-4e}{2}=0$

(i)(e)

$$f(z) = \frac{e^{z^{2}}}{(z-1)^{Y}} = \frac{\varphi(z)}{(z-1)^{Y}}$$
where φ is analytic at $z_{0} = 1$ and
 $\varphi(1) = e^{1} \neq 0$.
By a thm in class, we have a
pole of order $m = Y$ and
 $\operatorname{Res}(f_{j} 1) = \frac{\varphi^{(Y-1)}(1)}{(Y-1)!} = \frac{\varphi^{(3)}(1)}{3!}$
We have $\varphi(z) = e^{z^{2}}$
 $\varphi'(z) = 2ze^{z}$
 $\varphi'(z) = 2ze^{z}$
 $\varphi^{(1)}(z) = 2e^{z^{2}} + 2z(e^{z^{2}}zz)$
 $= 2e^{z^{2}} + 4z^{2}e^{z^{2}}$
 $\varphi^{(1)}(z) = 2 \cdot 2ze^{z^{2}} + 8ze^{z^{2}} + 4z^{2}(e^{z^{2}}zz)$
 $= 4ze^{z^{2}} + 8ze^{z^{2}} + 8ze^{z^{2}} + 8ze^{z^{2}}$
 $\operatorname{Res}(f_{j}1) = \frac{\varphi^{(1)}(1)}{6} = \frac{4(1)e^{1} + 8(1)e^{1}}{6} = \frac{20e}{6}$

 $\mathbb{O}(f)$

In this case 9 (7) $f(z) = \frac{z^2}{z^4 - 1} = \frac{g(z)}{h(z)}$ where $g(z) = z^2$ and $h(z) = z^4 - 1$. Here we have $g(i) = j^2 = -1 \neq 0$ And $h(i) = i^{4} - | = | - | = 0$. Also, $h'(z) = 4z^3$ and so $h'(z) = 4z^3 = -4z^2 \neq 0$ S_{0} g(i) $\neq 0$, h(i) = 0, h'(i) $\neq 0$. By a thm from class Zo=i is a simple pole of f and $Res(f;1) = \frac{g(i)}{h'(i)} = \frac{i^2}{-4} = \frac{-1}{-4}$ $= \frac{1}{4} \cdot \frac{1}{5} = \frac{1}{4} (-\overline{5}) = \frac{-\overline{5}}{4}$

$$\begin{aligned} (1)(q) & \text{If } z \neq 0 \text{ byt } near 0, \text{ then} \\ f(z) &= \left(\frac{\cos(z)-1}{z}\right)^2 = \left(\frac{-1+\cos(z)}{z}\right)^2 \\ &= \left(\frac{-1+1-\frac{z^2}{2!}+\frac{z^4}{4!}-\frac{z^6}{6!}+\cdots}{z}\right)^2 \\ &= \left(\frac{-\frac{z^2}{2!}+\frac{z^4}{4!}-\frac{z^6}{6!}+\cdots}{z}\right)^2 \\ &= \left(-\frac{z}{2!}+\frac{z^3}{4!}-\frac{z^5}{6!}+\cdots\right)^2 \\ &= \frac{1}{4}z^2 - \frac{1}{24}z^4 + \frac{z^4}{4!} - \frac{z^5}{6!} + \cdots \right)^2 \\ a + z_0 &= 0. \quad \text{And} \\ &\text{Res}(f; 0) &= 0 \end{aligned}$$

2) The singular points of f(z1=	$=\frac{1}{e^2-1}$
are when $e^{z} - 1 = 0$ or $e^{z} = 1$.	Λ_{c-c}
These are located at These are located at	6/11 472 201
$Z = Z \Pi A R W $	0 -211)
Here we have $g(z)$	-4MJ
f(z) = h(z) $h(z) = e^{z} - 1$. Ar	$d_{1}h'(z) = e^{z}$
where $g(z) = 1$, $h(z)$ $h(z) = 1 \neq 0$, $h(z) = 1 \neq 0$,	enik IZA
$h(z\pi ik) = e^{-1} h'(z\pi ik) = e$	= 170
So, by a thm in class these a	
simple poles and $g(2\pi i k) = \frac{1}{1}$	· =] .
Kes(t; ching) h'(ettic) (

(3) The singular points of $f(z) = \frac{1}{z^3 - 3}$ $\text{ Gre when } \overline{z^3} - \overline{3} = 0.$ 21 Let's solve this: $z^{3} = 3 = 3 \cdot e^{0i}$ Solutions are: $Z_{k} = 3^{1/3} e^{\left(\frac{2}{3} + \frac{2}{3}k\right)i}$ $= 3^{1/3} e^{\frac{2\pi}{3}k\lambda}, k = 0, 1, 2$ $= 3^{1/3}, 3^{1/3}e^{\frac{2\pi}{3}}, 3^{1/3}e^{\frac{4\pi}{3}}$ 22 2 2 So, Zo, Zi, Zz are the singularities of f(z). Let g(z) = 1, $h(z) = z^{3} - 3$. Then, $f(z) = \frac{g(z)}{h(z)}$. And $h'(z) = 3z^{2}$.

Note that

$$g(z_{o}) = (\neq 0)$$

 $h(z_{o}) = 0$
 $h'(z_{o}) = 3(3^{1/3})^{2} = 3 \cdot 3^{2/3} \neq 0$
 $h'(z_{o}) = 3(3^{1/3})^{2} = 3 \cdot 3^{2/3} \neq 0$
Thus, $z_{o} = 3^{1/3}$ is a simple pole
and
 $Res(f; 3^{1/3}) = \frac{g(3^{1/3})}{h'(3^{1/3})} = \frac{1}{3 \cdot 3^{2/3}}$

Also,
$$g(z_1) = | \neq 0$$

 $h(z_1) = 0$
 $h'(z_1) = 3(3'^{1/3}e^{\frac{2\pi}{3}\lambda})^2 = 3\cdot 3'e^{\frac{4\pi}{3}\lambda} \neq 0$
 $h'(z_1) = 3(3'^{1/3}e^{\frac{2\pi}{3}\lambda})^2 = 3\cdot 3'e^{\frac{4\pi}{3}\lambda} \neq 0$
So, z_1 is a simple pole and
 So_1 , z_1 is a simple pole and
 $Res(f_1, z_1) = \frac{g(z_1)}{h'(z_1)} = \frac{1}{3\cdot 3^{4/3}e^{\frac{4\pi}{3}\lambda}}$

We also have

$$g(z_{2}) \neq 0$$

 $h(z_{2}) = 0$
 $h'(z_{2}) = 3(3'' e^{\frac{y}{3}})^{2} = 3 \cdot 3^{2/3} e^{\frac{y}{3}} i \neq 0$
 $= 3 \cdot 3^{2/3} e^{\frac{z}{3}} i \neq 0$
So, we have a simple pole at z_{2} and
 $Res(f; z_{2}) = \frac{g(z_{2})}{h'(z_{2})}$
 $= \frac{1}{3 \cdot 3^{2/3} \cdot e^{\frac{z}{3}} i}$

(4) Since f, and fz both have simple poles at Zo We know that there exists a disc Daround Zo, and two functions $\varphi_1(z)$ and $\varphi_2(z)$ that are analytic in D, $\varphi_1(z_0) \neq 0, \ \varphi_2(z_0) \neq 0$ and for all $z \in D^* = D - \{z_o\}$ $D^* = D - \{2, \}$ we have $f_1(z) = \frac{\varphi_1(z)}{z-z}$ and $f_2(z) = \frac{\varphi_2(z)}{z-z_0}$. Thus, for ZED we have $(f_{i}f_{2})(z) = \frac{\varphi_{i}(z)\varphi_{2}(z)}{(z-z_{0})^{2}}$

where $q_1(z) \cdot q_2(z)$ is analytic in D, ie at z= zo, and $\varphi_1(z_0)\cdot\varphi_2(z_0)\neq 0$. Thus, we have a pole of 2 $= \varphi_{1}'(z_{0}) \varphi_{2}(z_{0}) + \varphi_{1}(z_{0}) \varphi_{2}'(z_{0})$