$$
5680
$$

HF 4 - Part 1 Solutions
(1) (a) Let $A=\{z|0<|z|<1\}$

We want to expand $\frac{1}{z(z+1)}$ in A about $z_{0}=0$,

If $z \in A$, that is $0<|z|<1$, then

$$
\begin{aligned}
& \text { If } z \in A \text {, that } \\
& \begin{aligned}
\frac{1}{z(z+1)} & =\frac{1}{z} \cdot \frac{1}{1-(-z)}=\frac{1}{z}\left[1+(-z)+(-z)^{2}+\cdots\right] \\
& \text { need }|z|<1
\end{aligned} \\
& =\frac{1}{z}-1+z-z^{2}+\cdots
\end{aligned}
$$

or in closed form we get

$$
\begin{aligned}
& \text { or in closed form we get } \\
& \frac{1}{z} \cdot \frac{1}{1-(-z)}=\frac{1}{z} \sum_{n=0}^{\infty}(-z)^{n}=\sum_{n=0}^{\infty}(-1)^{n} z^{n-1} \\
& \text { need }|z|<1
\end{aligned}
$$

We have a pole of order 1, or simple pole. And $\operatorname{Res}(f ; 0)=1$.
(1)(b) $\quad A=\{z|0<|z|<1\}$

We want to expand f around $z_{0}=0$.
Let $z \in A$, that is $0<|z|<1$ then we have

$$
\begin{aligned}
& \left.\begin{array}{rl}
\frac{z}{z+1} & =z \cdot \frac{1}{1-(-z) \mid}=z \cdot \sum_{n=0}^{\infty}(-z)^{n} \\
\text { heed we have }
\end{array}\right] \\
& \\
& =\sum_{n=0}^{\infty}(-1)^{n} z^{n+1}=z-z^{2}+z^{3}-z^{4}-\cdots
\end{aligned}
$$

Here we have a removable singularity. With $\operatorname{Res}(f ; 0)=0$
Note that the original function $\frac{z}{z+1}$ is well-defined at $z=0$. So this mules sense as it will then have a power series expansion there. The above expansion makes sense un $D(0 ; 1)$.

(1)(c)

$$
A=\{z|0<|z|\}=\mathbb{C}-\{0\}
$$

We want to expand

$$
f(z)=\frac{3 e^{z}}{z^{2}} \text { about } z_{0}=0
$$

inside of A.
Suppose $z \in A$, ie $z \neq 0$, then

$$
\begin{align*}
& \frac{3 e^{z}}{z^{2}}= \\
& =\frac{3}{z^{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} \frac{3 z^{n-2}}{n!} \\
& \\
& \\
& \\
& =\frac{3}{z^{2}}\left[1+z+\frac{3}{2!}+\frac{z^{2}}{z^{2}}+\cdots\right] \\
& \frac{3}{z}+\frac{3}{2}+\frac{1}{2} z+\cdots
\end{align*}
$$

We have a pole of order 2 and

$$
\operatorname{Res}(f ; 0)=3 .
$$

(2) (a)

Suppose $z \neq-1$, Then

$$
\frac{z}{z+1}=\frac{-1+(z+1)}{z+1}=\frac{-1}{z+1}+1
$$

$$
\begin{gathered}
\begin{array}{c}
\text { bottom is } \\
\text { already in } \\
\text { the form } \\
z-(-1)
\end{array} \\
\begin{array}{c}
\text { this is the } \\
\text { Laurent series }
\end{array} \\
\frac{-1}{z-(-1)}+1
\end{gathered}
$$

Our function equals this Laurent series for all $z \neq-1$. So let

$$
\begin{aligned}
& \text { for all } z \neq-1, \\
& A=\mathbb{C}-\{-1\}=\{z|0<|z+1|\}
\end{aligned}
$$

This is an isolated singularity. We have a simple pole, or a pole of order 1. The residue is $\operatorname{Res}(f ;-1)=-1$
(3)

$$
A=\{z|1<|z|\}
$$

We want to expand f
inside of A,
 centered at $z_{0}=0$
Let $z \in A$, that is $|<|z|$,
Then

$$
\begin{aligned}
& =\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+2}} \\
& =\frac{1}{z^{2}}-\frac{1}{z^{3}}+\frac{1}{z^{4}}-\frac{1}{z^{5}}+\cdots
\end{aligned}
$$

(4) (a)

We want to expand

$$
f(z)=\frac{1}{z(z-1)(z-2)}
$$

inside of A.

Method 1
We use partial fractions:

$$
\begin{aligned}
& \text { We use partial } \\
& \frac{1}{z(z-1)(z-2)}=\frac{A}{z}+\frac{B}{z-1}+\frac{C}{z-2} \\
& 1=A(z-1)(z-2)+B z(z-2)+C z(z-1) \\
& \text { Plug in } z=0: \quad \begin{array}{l}
1=A(-1)(-2)+B(0)+C(0) \\
\frac{1}{2}=A
\end{array}
\end{aligned}
$$

Plug in $z=1$:

$$
\begin{aligned}
& 2=A \\
& 1=A(0)+B(1)(-1)+C(0) \\
& -1=B
\end{aligned}
$$

$$
\frac{1}{2}=A
$$

plug in $z=2: 1=A(0)+B(0)+C(2)(1)$

$$
\frac{1}{2}=c
$$

Let $z \in A$. Then,

$$
\begin{align*}
\frac{1}{z(z-1)(z-2)} & =\frac{1}{2} \cdot \frac{1}{z}-\frac{1}{z-1}+\frac{1}{2} \cdot \frac{1}{z-2} \tag{*}\\
& =\frac{1}{2} \cdot \frac{1}{z}+\frac{1}{1-z}-\frac{1}{2 \cdot 2} \cdot \frac{1}{1-\frac{z}{2}}
\end{align*}
$$

To expund (*) we need $|z|<1$ We also need $\left|\frac{z}{2}\right|<1$ or $|z|<2$ Both of these are satisfied for $z \in A$ since then $|z|<1$.
Let $z \in A$. Then $(*)$ becomes

$$
\begin{aligned}
& \text { et } z \in A \text {. Then } \\
& \frac{1}{2} \cdot \frac{1}{z}+\left[1+z+z^{2}+z^{3}+\cdots\right]-\frac{1}{4}\left[1+\frac{z}{2}+\frac{z^{2}}{2^{2}}+\cdots\right] \\
& =\frac{1 / 2}{z}+\left[1+z+z^{2}+z^{3}+\cdots\right]-\left[\frac{1}{2^{2}}+\frac{z}{2^{3}}+\frac{z^{2}}{2^{4}}+\cdots\right] \\
& =\frac{1 / 2}{z}+\frac{3}{4}+\frac{7}{8} z+\frac{15}{16} z^{2}+\cdots \\
& =\frac{1 / 2}{z}+\sum_{n=0}^{\infty}\left(\frac{2^{n+2}-1}{2^{n+2}}\right) z^{n}
\end{aligned}
$$

Method 2
As in method 1, let $z \in A$. Then we have both $|z|<1$ and $\left|\frac{z}{2}\right|<1$.

So,
(4)(b) Let's expand

$$
f(z)=\frac{1}{z(z-1)(z-2)}
$$

in B.
Let $z \in B$.
Using partial fractions like in $4(a)$ to get

$$
\begin{align*}
& \frac{1}{z(z-1)(z-2)} \tag{*}\\
& =\frac{1}{2} \cdot \frac{1}{z}-\frac{1}{z-1}+\frac{1}{2} \cdot \frac{1}{z-2} \\
& \\
&
\end{align*}=\frac{1}{2} \cdot \frac{1}{z}-\frac{1}{z\left(1-\frac{1}{z}\right)}-\frac{1}{4} \cdot \frac{1}{1-\frac{z}{2}} .
$$

If $z \in B$ then $1<|z|<2$.
Therefore we have $\left|\frac{1}{z}\right|<1$ and $\left|\frac{z}{2}\right|<1$.

$$
\begin{aligned}
& \text { Thus, }(*) \text { gives } \\
& \begin{array}{r}
\frac{1}{z(z-1)(z-2)}=\frac{1}{2 z}-\frac{1}{z}\left[1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots\right] \\
\\
-\frac{1}{4}\left[1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots\right]
\end{array} \\
& =\ldots-\frac{1}{z^{4}}-\frac{1}{z^{3}}-\frac{1}{z^{2}}-\frac{1}{2 z}-\frac{1}{4}-\frac{z}{8}-\frac{z^{2}}{16}-\frac{z^{3}}{32}-\cdots
\end{aligned}
$$

(5) We want to expand $f(z)=\frac{1}{z^{2}(1-z)}$ into a Laurent series in

$$
A=\{z|0<|z-1|<1\}
$$

We have that

$$
f(z)=\frac{1}{z^{2}} \cdot \frac{-1}{z-1}
$$

We need to expand $\frac{1}{z^{2}}$ about $z_{0}=1$.
The function $g(z)=\frac{1}{z^{2}}$ is analytic in A, so it has a power series in A of the form $\sum_{n=0}^{\infty} \frac{g^{(n)}(1)}{n!}(z-1)^{n}$.

We have that

$$
\begin{aligned}
& \text { e have that } \\
& g(z)=z^{-2} \\
& g^{\prime}(z)=-2 z^{-3} \\
& g^{\prime \prime}(z)=3!z^{-4} \\
& g^{\prime \prime \prime}(z)=-4!z^{-5}
\end{aligned} \quad \begin{aligned}
& \text { and in general } \\
& g^{(n)}(z)=(-1)^{n}(n+1)!z^{-(n+2)} \\
& g^{(n)}(1)=(-1)^{n}(n+1)!
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
g(z) & =\frac{1}{z^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)!}{n!}(z-1)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n}(n+1)(z-1)^{n} \quad(n+1)!=(n+1) \cdot n!
\end{aligned}
\end{aligned}
$$

So if $z \in A$, then

$$
\begin{aligned}
& \text { So if } z \in A, \text { then } \\
& \begin{aligned}
f(z) & =\frac{-1}{z-1}\left[\sum_{n=0}^{\infty}(-1)^{n}(n+1)(z-1)^{n}\right] \\
& =\sum_{n=0}^{\infty}(-1)^{n+1}(n+1)(z-1)^{n-1} \\
& =\frac{-1}{z-1}+2-3(z-1)+4(z-1)^{2}-\cdots
\end{aligned}
\end{aligned}
$$

We have a pole of order 1 .

$$
\operatorname{Res}(f ; 1)=-1
$$

(6) Let $z \in A$. Then $0<|z|<1$. And,

$$
\begin{aligned}
& \frac{z+1}{z^{3}\left(z^{2}+1\right.}=\frac{1+z}{z^{3}} \cdot \frac{1}{1-\left(-z^{2}\right)} \\
& =\frac{1+z}{z^{3}}\left[1+\left(-z^{2}\right)+\left(-z^{2}\right)^{2}+\left(-z^{2}\right)^{3}+\left(-z^{2}\right)^{4}+\ldots\right] \\
& \left.\begin{array}{l}
\text { we have }|z|<\mid \\
\text { thus }|z|^{2}<1 \\
\text { so }\left|z^{2}\right|<1 \\
\text { so }\left|-z^{2}\right|<1
\end{array}\right]=\frac{1+z}{z^{3}}\left[1-z^{2}+z^{4}-z^{6}+z^{8}-\ldots\right] \\
& =\left[\frac{1}{z^{3}}-\frac{1}{z}+z\right)\left[\frac{1}{z^{3}}-\frac{1}{z}+z-z^{3}+z^{5}-\ldots\right]+\left[\frac{1}{z^{2}}-1+z^{5}-\ldots\right] \\
& \left.=\frac{1}{z^{3}}+\frac{1}{z^{2}}-\frac{1}{z}-1+z+z^{6}-\ldots\right]
\end{aligned}
$$

Also, $\operatorname{Res}(f ; 0)=-1$.
(7) $A=\{z|0<|z|<1\}$

Let $z \in A$.
Then, $|z|<1$ and $z \neq 0$, so

$$
\begin{aligned}
& f(z)=e^{1 / z} \cdot \frac{1}{1-z} \\
& =\left[1+\frac{1}{z}+\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{3!} \frac{1}{z^{3}}+\cdots\right]\left[1+z+z^{2}+z^{3}+\cdots\right] \\
& =1+\frac{1}{z}+\frac{1}{2!} \cdot \frac{1}{z^{2}}+\frac{1}{3!} \cdot \frac{1}{z^{3}}+\cdots \\
& =\quad \begin{array}{l}
1+\frac{1}{2!} \cdot \frac{1}{z}+\frac{1}{3!} \frac{1}{z^{2}}+\frac{1}{4!} \cdot \frac{1}{z^{3}}+\cdots \\
z^{2}+z+\frac{1}{2!}+\frac{1}{3!} \frac{1}{z}+\frac{1}{4!} \frac{1}{z^{2}}+\frac{1}{5!} \cdot \frac{1}{z^{3}}+\cdots \\
z^{3}+z^{2}+\frac{1}{2!} z+\frac{1}{3!}+\frac{1}{4!} \frac{1}{z}+\frac{1}{5!} \frac{1}{z^{2}}+\frac{1}{6!} \frac{1}{z^{2}}+\cdots \\
\end{array}: \quad:
\end{aligned}
$$

$$
\begin{aligned}
& =\ldots+\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots\right) \cdot \frac{1}{z^{2}} \\
& +\left(1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots\right) \cdot \frac{1}{z} \\
& +\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots\right) \cdot 1 \\
& +\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots\right) z \\
& +\ldots \\
& =\cdots+\underbrace{(e-2)}_{b_{2}} \cdot \frac{1}{z^{2}}+\underbrace{(e-1)}_{b_{1}} \cdot \frac{1}{z}+{ }_{\uparrow}^{e}+e a_{0} a_{1}+e z^{2}+\cdots \\
& \left\{\begin{array}{l}
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots
\end{array}\right. \\
& \text { So, } b_{2}=e-2 \\
& b_{1}=e-1 \\
& a_{0}=e \\
& a_{1}=e
\end{aligned}
$$

(8) (a)

$$
f(z)=\frac{1}{(1-z)^{2}}=\frac{1}{(z-1)^{2}}
$$

This is the Laurent series for f centered at $z_{0}=1$ and valid on

$$
A=\{z|0<|z-1|\}
$$

We have a pole of order 2.
(8) (b) Since we can write $f(z)=\frac{\sin (z-1)}{z^{2}}$ as $\frac{\varphi(z)}{(z-0)^{2}}$ where $\varphi(z)=\sin (z-1)$ and $\varphi(z)$ is analytic at $z_{0}=0$ and $\varphi(0) \neq 0$ we have that f has a pole of order 2 at $z_{0}=0$ [From the in class]
(9)

$$
\begin{aligned}
& \frac{1}{e^{z}-1}=\frac{1}{\left(1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{1}{24} z^{4}+\cdots\right)-1} \\
&=\frac{1}{z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{1}{24} z^{4}+\cdots} \\
&=\frac{1}{4}-\frac{1}{2}+\frac{1}{12} z+\cdots \\
&\left(z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\cdots\right) \frac{\sqrt{z}-\frac{1}{2}+\frac{1}{12} z+\cdots}{1} \\
& \frac{-\left(1+\frac{1}{2} z+\frac{1}{6} z^{2}+\cdots\right)}{-\frac{1}{2} z-\frac{1}{6} z^{2}-\cdots} \\
& \frac{\left.-\frac{1}{2} z-\frac{1}{4} z^{2}-\cdots\right)}{\frac{1}{12} z^{2}+\cdots} \\
& \frac{-\left(\frac{1}{12} z^{2}+\cdots\right)}{\vdots}
\end{aligned}
$$

So, we have a pole of order 1 with $\operatorname{Res}(f ; 0)=1$
And $b_{1}=1, a_{0}=-\frac{1}{2}, a_{1}=\frac{1}{12}$.
(10) (a) Note that

$$
f(z)=\frac{1}{z^{2}-1}=\frac{1}{(z-1)(z+1)}=\frac{1}{z-1} \cdot \frac{1}{z+1}
$$

Also $g(z)=\frac{1}{z+1}$ is analytic at $z_{0}=1$
So it has a power series there.
Let's find it.

$$
\begin{array}{ll}
\text { Let's find it. } & \\
g(z)=(z+1)^{-1} & g(1)=\frac{1}{2} \\
g^{\prime}(z)=-(z+1)^{-2} & g^{\prime}(1)=-\frac{1}{z^{2}}=-\frac{1}{4} \\
\end{array}
$$

So near $z_{0}=1$ we have

$$
\begin{aligned}
& \text { So near } \begin{aligned}
z_{0} & =1 \\
g(z)=\frac{1}{z+1} & =\sum_{n=0}^{\infty} \frac{g^{(n)}(1)}{n!}(z-1)^{n} \\
& =\frac{1}{2}-\frac{1}{4}(z-1)+\frac{1}{8}(z-1)^{2}+\cdots
\end{aligned}
\end{aligned}
$$

So, near $z_{0}=1$ we get

$$
\begin{aligned}
f(z) & =\frac{1}{z-1} \cdot \frac{1}{z+1} \\
& =\frac{1}{z-1} \cdot\left[\frac{1}{2}-\frac{1}{4}(z+1)+\frac{1}{8}(z+1)^{2}+\cdots\right] \\
& =\frac{1 / 2}{z-1}-\frac{1}{4}+\frac{1}{8}(z-1)+\cdots
\end{aligned}
$$

So, $\operatorname{Res}(f ; 1)=1 / 2$
(10)(b) We use part (a) but also we expand z about $z_{0}=1$. You could use the formula $\sum \frac{g^{(n)}(1)}{n!}(z-1)^{n}$ but in this care it's easy. We have

$$
z=1+(z-1)
$$

Thus, near $z_{0}=1$ we have

$$
\begin{aligned}
& \text { Thus, near } z_{0}=1 \\
& \begin{aligned}
& f(z)=\frac{z}{z^{2}-1}=z \cdot \frac{1}{z^{2}-1} \\
&= {[1+(z-1)]\left[\frac{1 / 2}{z-1}-\frac{1}{4}+\frac{1}{8}(z-1)+\cdots\right] } \\
&=\frac{1 / 2}{z-1}+\frac{1}{4}-\frac{1}{8}(z-1)+\cdots \\
& \text { Res }(f ; 1)=1 / 2
\end{aligned}
\end{aligned}
$$

(10)(c) If $z \neq 0$, then

$$
\begin{aligned}
& f(z)=\frac{e^{z}-1}{z^{2}} \\
&=\frac{-1+e^{z}}{z^{2}} \\
&=\frac{\left(-1+1+\frac{1}{1!} z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots\right)}{z^{2}} \\
&=\frac{1}{z^{2}} \cdot\left[z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\cdots\right] \\
&=\frac{1}{z}+\frac{1}{2}+\frac{1}{6} z+\cdots \\
& \operatorname{Res}(f ; 0)=1
\end{aligned}
$$

(10)(d) If $z \neq 0$, then

$$
\begin{aligned}
f(z) & =\frac{e^{z}-1}{z} \\
& =\frac{\frac{-1+e^{z}}{z}}{} \\
& =\frac{\left(-1+1+\frac{1}{1!} z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots\right)}{z} \\
& =\frac{1}{z} \cdot\left[z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\cdots\right] \\
& =1+\frac{1}{2} z+\frac{1}{6} z^{2}+\cdots
\end{aligned}
$$

$$
\operatorname{Res}(f ; 0)=0
$$

This is a removable singularity. The original function f isn't defined at 0 . But we can "fill it in" at $z=0$ by giving it the value of the power series at 0 which is 1 .
(11) Suppose that f is analytic at z_{0} and has a zero of multiplicity k at z_{0}.
That is, $f(z)=\left(z-z_{0}\right)^{k} \varphi(z)$ where $\varphi(z)$ is analytic at z_{0} and $\varphi\left(z_{0}\right) \neq 0$.

$$
\begin{aligned}
& \text { Then, } \\
& f^{\prime}(z)=k\left(z-z_{0}\right)^{k-1} \varphi(z)+\left(z-z_{0}\right)^{k} \varphi^{\prime}(z)
\end{aligned}
$$

Then, And so,

Note that since φ is analytic at z_{0} and $\varphi\left(z_{0}\right) \neq 0$ we know that

$$
\frac{\phi^{\prime}(z)}{\varphi(z)}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and converges near Z_{0}.
Thus, near z_{0} we have

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{k}{z-z_{0}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

So, $\operatorname{Res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=k$
Φ is analytic at z_{0} and so φ^{\prime} is analytic at z_{0} by 4680.
Thus, $\frac{\varphi^{\prime}}{\phi}$ is analytic at z_{0}.
so by
Taylors theorem we get this expansion

