$$
\begin{aligned}
& 5680 \\
& \text { HO } 1 \\
& \text { Solutions }
\end{aligned}
$$

(1) (a)

$$
\begin{aligned}
& \text { (1)(a) } \begin{aligned}
\sum_{n=1}^{\infty} \frac{i^{n}}{2^{n-1}} & =i \sum_{n=1}^{\infty}\left(\frac{i}{2}\right)^{n-1}=i\left[\left(\frac{i}{2}\right)^{0}+\left(\frac{i}{2}\right)^{1}+\left(\frac{i}{2}\right)^{2}+\cdots\right] \\
& =i \sum_{n=0}^{\infty}\left(\frac{i}{2}\right)^{n}
\end{aligned}
\end{aligned}
$$

This is a geometric series.
Recall that $\sum_{n=0}^{\infty} z^{n}$ converges inf $|z|<1$, with sum equal to $\frac{1}{1-z}$ if it

Here we have $z=\frac{i}{2}$ and $|z|=\left|\frac{i}{2}\right|=\frac{1}{2}<1$. converges.

Thus, $\sum_{n=1}^{\infty} \frac{i^{-n}}{2^{n-1}}$ converges to the sum

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{i^{n}}{2^{n-1}}=i \sum_{n=0}^{\infty}\left(\frac{i}{2}\right)^{n} & =i \frac{1}{1-\frac{i}{2}}=i \frac{2}{2-i} \\
& =\frac{2 i}{2-i}
\end{aligned}
$$

(1) (b) We have that

$$
\begin{aligned}
& \sum_{n=3}^{\infty} \frac{e+1}{2^{n} \pi^{n+3}}=(e+1) \sum_{n=3}^{\infty} \frac{1}{2^{n} \pi^{n+3}} \\
& =(e+1)\left[\frac{1}{2^{3} \cdot \pi^{6}}+\frac{1}{2^{4} \cdot \pi^{7}}+\frac{1}{2^{5} \cdot \pi^{8}}+\cdots\right] \\
& =(e+1) \frac{1}{2^{3} \cdot \pi^{6}}\left[1+\frac{1}{2^{1} \cdot \pi}+\frac{1}{2^{2} \cdot \pi^{2}}+\cdots\right] \\
& =(e+1) \frac{1}{2^{3} \cdot \pi^{6}} \sum_{n=0}^{\infty} \frac{1}{2^{n} \pi^{n}}=(e+1) \frac{1}{2^{3} \cdot \pi^{6}} \sum_{n=0}^{\infty}\left(\frac{1}{2 \cdot \pi}\right)^{n}
\end{aligned}
$$

Note that $\left|\frac{1}{2 \pi}\right| \approx 0.16<1$.
Thus, this geometric secies converges to

$$
\begin{aligned}
& \text { Thus, this geometric } \\
& (e+1) \frac{1}{2^{3} \cdot \pi^{6}} \cdot\left(\frac{1}{1-\frac{1}{2 \pi}}\right)=(e+1) \frac{1}{2^{3} \cdot \pi^{6}}\left(\frac{2 \pi}{2 \pi-1}\right)
\end{aligned}
$$

(1) (c)

Note that

$$
\begin{aligned}
& \text { Note that } \\
& \begin{aligned}
\sum_{n=0}^{\infty} \frac{10^{n+1}}{2^{n} \sqrt{3}^{n+3}} & =\frac{10^{1}}{2^{0} \sqrt{3}^{3}}+\frac{10^{2}}{2^{1} \cdot \sqrt{3}^{4}}+\frac{10^{3}}{2^{2} \cdot \sqrt{3}^{5}}
\end{aligned}=\cdots \\
& \\
& =\frac{10}{\sqrt{3}^{3}}\left[1+\frac{10^{1}}{2^{1} \cdot \sqrt{3}^{1}}+\frac{10^{2}}{\sqrt{2}^{2} \cdot \sqrt{3}^{2}}+\cdots\right] \\
& \\
& =\frac{10}{\sqrt{3}^{3}} \sum_{n=0}^{\infty} \frac{10^{n}}{2^{n} \cdot \sqrt{3}^{n}}=\frac{10}{\sqrt{3}^{3}} \sum_{n=0}^{\infty}\left(\frac{10}{2 \sqrt{3}}\right)^{n}
\end{aligned} .
$$

Note that $\left|\frac{10}{2 \sqrt{3}}\right| \approx 2.89>1$.
Thus, the above geometric series diverges.
(1) (d) Note that

$$
\begin{aligned}
& \text { (1)(d) Note that } \\
& \lim _{n \rightarrow \infty}\left(\frac{(1+i)^{n}}{5+(1+i)^{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{5}{(1+i)^{n}}+1}\right)
\end{aligned}
$$

divide top $/$ lo them
by $(1+i)^{n}$

$$
\begin{aligned}
& \text { Also, } \\
& \begin{array}{l}
\lim _{n \rightarrow \infty}\left|\frac{5}{(1+i)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|5|}{\left|(1+i)^{n}\right|} \\
=\lim _{n \rightarrow \infty} \frac{5}{|1+i|^{n}}=\lim _{n \rightarrow \infty} \frac{5}{\sqrt{2}^{n}}=0
\end{array} \lim _{5}\left|a_{n}\right|=0 \text { if }
\end{aligned}
$$

Also,

Thus, $\lim _{n \rightarrow \infty} \frac{5}{(1+i)^{n}}=0 . \quad \lim \left|a_{a}\right|=0$ if $\lim a_{n}=0$ $\lim a_{n}=0$

So, $\lim _{n \rightarrow \infty}\left[\frac{(1+i)^{n}}{5+(1+i)^{n}}\right]=\frac{1}{0+1}=1 \neq 0$.
So, by the divergence theorem, $\sum_{n=1}^{\infty} \frac{(1+i)^{n}}{5+(1+i)^{n}}$ diverges.
(1) (e)

We need to use partial fractions here.
Let's solve

$$
\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}
$$

which becomes

$$
\begin{equation*}
1=A(n+1)+B n \tag{*}
\end{equation*}
$$

This must be true for all n.
Plug in $n=-1$ into (*) to get

$$
\begin{aligned}
& 1=A(0)+B(-1) \\
& B=-1
\end{aligned}
$$

Plug in $n=0$ into (*) to get

$$
\begin{aligned}
& 1=A(1)+B(0) \\
& A=1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& n(n+1)
\end{aligned} \frac{1}{n}-\frac{1}{n+1} \text { for } n \geqslant 1
$$

Let's look at the partial sums

$$
\begin{aligned}
& \text { Let's look at the partial sums } \\
& S_{k}=\sum_{n=1}^{k} \frac{1}{n(n+1)}=\sum_{n=1}^{k}\left[\frac{1}{n}-\frac{1}{n+1}\right]
\end{aligned}
$$

We have that

$$
\begin{aligned}
& \text { We have } \\
& S_{1}=(\underbrace{\frac{1}{1}-\frac{1}{2}}_{n=1})=1-\frac{1}{2} \\
& S_{2}=\underbrace{\left(\frac{1}{1}-\frac{1}{2}\right.}_{n=1})+\underbrace{\left(\frac{1}{2}-\frac{1}{3}\right.}_{n=2})=1-\frac{1}{3} \\
& S_{3}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{\beta}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)=1-\frac{1}{4}
\end{aligned}
$$

In general

$$
S_{k}=1-\frac{1}{k+1}
$$

So,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \sum_{n=0}^{k} \frac{1}{n(n+1)} & =\lim _{k \rightarrow \infty} S_{k}= \\
& =\lim _{k \rightarrow \infty}\left(1-\frac{1}{k+1}\right) \\
& =1-0 \\
& =1
\end{aligned}
$$

Thus, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges and

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1 .
$$

(2) If $n_{0}=1$, the series are the same. suppose $n_{0}>1$.
Let $S_{k}=a_{1}+\cdots+a_{k}$ be the partial sums of $\sum_{n=1}^{\infty} a_{n}$ and

$$
s_{k}^{\prime}=a_{n_{0}}+a_{n_{0}+1}+\cdots+a_{n_{0}+k} \text { be the partial }
$$

$$
\text { sums ob } \sum_{n=n_{0}}^{\infty} a_{n} \text {. }
$$

$\Leftrightarrow)$ Suppose $\sum_{n=1}^{\infty} a_{k}$ exists. Then,

$$
\lim _{k \rightarrow \infty} S_{k}=s \text { for some } s \in \mathbb{C}
$$

Note that

$$
\begin{aligned}
& \text { Note that } \\
& \begin{aligned}
S_{n_{0}+k} & =a_{1}+a_{2}+\ldots+a_{n_{0}-1}+a_{n_{0}}+a_{n_{0}+1}+\ldots+a_{n_{0}+k} \\
& =a_{1}+a_{2}+\ldots+a_{n_{0}-1}+s_{k}^{\prime} \\
& =w+s_{k}^{\prime}
\end{aligned}
\end{aligned}
$$

where $\omega=a_{1}+a_{2}+\ldots+a_{n_{0}-1}$ is a fixed complex number.

So,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} S_{k}^{\prime}=\lim _{k \rightarrow \infty}\left(S_{n_{0}+k}-w\right) & =\left(\lim _{k \rightarrow \infty} S_{n_{0}+k}\right)-w \\
& =S-w .
\end{aligned}
$$

Thus, $\sum_{n=n_{0}}^{\infty} a_{n}$ exists and

$$
\sum_{n=n_{0}}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{n}-\left(a_{\left.a_{1}+a_{2}+\ldots+a_{n_{0}-1}\right)}^{w}\right.
$$

\Leftrightarrow Now suppose $\sum_{n=n_{0}}^{\infty} a_{n}$ exists.
Then, $\lim _{k \rightarrow \infty} S_{k}^{\prime}=S^{\prime}$ for some $S^{\prime} \in \mathbb{C}$.
As before we have $S_{n_{0}+k}=w+S_{k}^{\prime}$.
Thus, $\lim _{k \rightarrow \infty} S_{n_{p}+k}=\lim _{k \rightarrow \infty}\left(w+S_{k}{ }^{\prime}\right)$

$$
=w+\lim _{k \rightarrow \infty} s_{k}^{\prime}=w+s^{\prime}
$$

Thus, $\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} S_{n_{0}+k}$

$$
=w+s^{\prime}
$$

So, $\sum_{n=1}^{\infty} a_{n}$ converges and

$$
\sum_{n=1}^{\infty} a_{n}=w+s^{\prime}=a_{1}+\cdots+a_{n_{0}-1}+\sum_{n=n_{0}}^{\infty} a_{n}
$$

(3)

$$
\begin{aligned}
& \text { Let } \\
& S_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
\end{aligned}
$$

and

$$
s_{n}^{\prime}=\sum_{k=1}^{n} b_{k}=b_{1}+b_{2}+b_{3}+b_{4}+\cdots
$$

be the partial sums fur the two series, Then $\lim _{n \rightarrow \infty} S_{n}=A$ and $\lim _{n \rightarrow \infty} S_{n}^{\prime}=B$.
(a)

The partial sums for the series $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$

$$
\begin{aligned}
& \text { The partial sums } \\
& \text { are } S_{n}^{\prime \prime}=\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}=S_{n}+s_{n}^{\prime} \text {. }
\end{aligned}
$$

Thus,

$$
\lim S_{n}^{\prime \prime}=\lim _{n \rightarrow \infty} S_{n}+\lim _{n \rightarrow \infty} S_{n}^{\prime}=A+B
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \quad n \rightarrow \infty \\
& \text { property of convergent sequences }
\end{aligned}
$$

So, $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ converges to $A+B$.
(b) The partial sums of $\sum_{k=1}^{\infty} \alpha a_{k}$ are

$$
S_{n}^{\prime \prime \prime}=\sum_{k=1}^{n}\left(\alpha a_{k}\right)=\alpha \sum_{k=1}^{n} a_{k}=\alpha S_{n}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \qquad \begin{array}{l}
\lim _{n \rightarrow \infty} s_{n}^{\prime \prime \prime}=\lim _{n \rightarrow \infty}\left(\alpha s_{n}\right)=\alpha \lim _{n \rightarrow \infty} s_{n} \\
\begin{array}{c}
\text { property of } \\
\text { sequences }
\end{array}
\end{array}
\end{aligned}
$$

$$
=\alpha A
$$

So, $\sum_{k=1}^{\infty} \alpha a_{k}$ converges to $\propto A$.
(4)

Let $S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}$ denote the n-th partial sum of the series. (F) Suppose that $\sum_{k=1}^{\infty} a_{k}$ converges. Then $\left(S_{n}\right)_{n=1}^{\infty}$ converges.
Thus, $\left(S_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.
Let $\varepsilon>0$.
Then since $\left(S_{n}\right)$ is a Cauchy sequence there exists $N>0$ where if $n, m \geqslant N$ then $\left|S_{m}-S_{n}\right|<\varepsilon$.
Let $n \geqslant N$ and $m=n+p$ where $p \geqslant 1$. Then, $m \geqslant N$ also and

$$
\begin{aligned}
& \text { Then, } m \geqslant N \text { also and } \\
& \left|S_{m}-S_{n}\right|=\left|S_{n+\rho}-S_{n}\right|=\left|\sum_{k=1}^{n+p} a_{k}-\sum_{k=1}^{n} a_{k}\right|=\left|\sum_{k=n+1}^{n+p} a_{k}\right|
\end{aligned}
$$

So (k) gives $\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\varepsilon$
(ص) Suppose that for every $\varepsilon>0$ $\exists N>0$ se that if $n \geqslant N$ then $\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\varepsilon$ for $p=1,2,3, \ldots$
We can use this to show that $\left(S_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence. Let $\varepsilon>0$.
Then from our assumption there exists $N>0$ where if $n \geqslant N$ then $\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\varepsilon$ for $p=1,2,3, \ldots$
Let $n, m \geqslant N$.
Without loss of generality suppose $m \geqslant n$.
case 1: Suppose $m=n$.
Then,

$$
\left|S_{m}-S_{n}\right|=\left|S_{n}-S_{n}\right|=0<\varepsilon
$$

Cause 2: Suppose $m>n$.
Then $m=n+p$ for some $p \geqslant 1$.
So, $\left|S_{m}-S_{n}\right|=\left|\sum_{k=1}^{n+p} a_{k}-\sum_{k=1}^{n} a_{k}\right|=\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\varepsilon$
From the two cases we see that given $m, n \geqslant N$, then $\left|S_{m}-S_{n}\right|<\varepsilon$.

So, $\left(S_{n}\right)_{n=1}^{\infty}$ is Cauchy.
Thus, $\left(S_{n}\right)_{n=1}^{\infty}$ converges.
Hence $\sum_{k=1}^{\infty} a_{k}$ converges.
(5) Let S_{n} be the partial sums of $\sum_{k=1}^{\infty} a_{k}$ and s_{n}^{\prime} be the partial sums of $\sum_{k=1}^{\infty} b_{k}$.
(a) Suppose $\sum b_{k}$ converges.

Let $\varepsilon>0$.
By the Cauchy criterion for series (problem) there exists $N>0$ so that if $n \geqslant N$ then

$$
\begin{aligned}
& n \geqslant N \text { then } \\
& b_{n+1}+b_{n+2}+\cdots+b_{n+p}=\left|b_{n+1}+b_{n+2}+\cdots+b_{n+p}\right|<\varepsilon \\
& \qquad \begin{array}{c}
b_{k} \text { are positive } \\
\text { real numbers }
\end{array} \quad \text { for all } p \geqslant 1 .
\end{aligned}
$$

Since $0<a_{k} \leq b_{k}$ for all k we get that

$$
\begin{aligned}
\left|a_{n+1}+a_{n+2}+\ldots+a_{n+p}\right| & =a_{n+1}+a_{n+2}+\ldots+a_{n+p} \\
& \leq b_{n+1}+b_{n+2}+\ldots+b_{n+p}<\varepsilon
\end{aligned}
$$

for all $p \geqslant 1$. Thus, by the Cauchy criterion for series (problem 4), $\sum_{k=1}^{\infty} a_{k}$ converges
(b) (See here) $\sum^{\infty} a_{k} \rightarrow$

Suppose that $\sum_{k=1}^{\infty} a_{k}$ diverges. an increasing sequence.
If $\left(S_{n}\right)_{n=1}^{\infty}$ was bounded, then by the without seeing this monotone convergence theorem in real analysis (4650), the sequence S_{n} would have a limit.
Thus, $\left(S_{n}\right)_{n=1}^{\infty}$ is unbounded, ie $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Since $a_{k} \leqslant b_{k}$ for all k, this tells us that

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\ldots+a_{n} \\
& \leq b_{1}+b_{2}+\ldots+b_{n}=s_{n}^{\prime}
\end{aligned}
$$

Thus, the sequence s_{n}^{\prime} is also unbounded, ie $S_{n}^{\prime} \rightarrow \infty$ as $n \rightarrow \infty$, $\quad S_{0},\left(S_{n}^{\prime}\right)_{n=1}^{\infty}$ does not converge and $\sum_{k=1}^{\infty} b_{k}$ diverges
(6) (a) Consider the sequence $\sum_{n=1}^{\infty} \sin \left(\pi i^{n}\right)$

Note that

$$
\begin{aligned}
& \text { Note that } \\
& \begin{aligned}
& \sin (\pi i)=\frac{e^{i(\pi i)}-e^{-i(\pi i)}}{2 i}=\frac{1}{2 i}\left[e^{-\pi}-e^{\pi}\right] \\
&=\frac{-i}{2}\left[e^{-\pi}-e^{\pi}\right] \neq 0 \\
& \sin \left(\pi i^{2}\right)=\sin (-\pi)=0 \\
& \sin \left(\pi i^{3}\right)=\sin (-\pi i)=-\sin (\pi i)=\frac{i}{2}\left[e^{-\pi}-e^{\pi}\right] \neq 0 \\
& \sin (-z)=-\sin (z)
\end{aligned} \\
& \sin \left(\pi i^{-4}\right)=\sin (\pi)=0 \\
& \sin \left(\pi i^{-5}\right)=\sin (\pi i)=\frac{-i}{2}\left[e^{-\pi}-e^{\pi}\right] \\
& \sin \left(\pi i^{-6}\right)=\sin \left(\pi i^{2}\right)=0
\end{aligned}
$$

The terms a tannate between the above fore numbers and hence don't yo to 0. By the divergence tho, this series diverges.
(6) (6)

Note that

$$
\begin{aligned}
\left|\frac{1+(-i)^{n}}{n^{2}}\right|=\frac{\left|1+(-i)^{n}\right|}{\left|n^{2}\right|} & \leq \frac{|1|+\left|(-j)^{n}\right|}{n^{2}} \\
& =\frac{2}{n^{2}} \\
\infty & \left|(-i)^{n}\right|=|-i|^{n}=1^{n}=1
\end{aligned}
$$

And, $\sum_{n=1}^{\infty} \frac{2}{n^{2}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
Thus, $\sum_{n=1}^{\infty}\left|\frac{1+(-i)^{n}}{n^{2}}\right|$ converges by the
$\underbrace{\text { Comparison test }}_{(\text {problem } 5)}$ since $\left|\frac{1+(-i)^{n}}{n^{2}}\right| \leq \frac{2}{n^{2}}$ for all n.

So, $\sum_{n=1}^{\infty} \frac{1+(-i)^{n}}{n^{2}}$ converges absolutely.
(6) (c) Suppose $|z|<1$.

Then, $\sum_{n=1}^{\infty}\left|z^{n}\right|=\sum_{n=1}^{\infty}|z|^{n}$

$$
\begin{aligned}
& =|z|+|z|^{2}+|z|^{3}+\cdots \\
& =|z|\left[1+|z|+|z|^{2}+\cdots\right]=|z| \frac{1}{1-|z|} \\
& \text { fromcluss }
\end{aligned}
$$

Thus, $\sum_{n=1}^{\infty} z^{n}$ converges absolutely if $|z|<1$.
(6) (d) Suppose $|z| \geqslant 1$.

If $|z|=1$, then

$$
\begin{aligned}
& \text { If }|z|=1 \text {, then } \\
& \lim _{n \rightarrow \infty}\left|z^{n}\right|=\lim _{n \rightarrow \infty}|z|^{n}=\left.\lim _{n \rightarrow \infty}\right|^{n}=1
\end{aligned}
$$

If $|z|>1$, then

$$
\lim _{n \rightarrow \infty}\left|z^{n}\right|=\lim _{n \rightarrow \infty}|z|^{n}=\infty
$$

In either case

$$
\lim _{n \rightarrow \infty}\left|z^{n}\right| \neq 0
$$

Thus, if $|z| \geqslant 1$, then

So, by the divergence test

$$
\sum_{n=1}^{\infty} z^{n}
$$

diverges if $|z| \geqslant 1$.
(7)

Let $S_{n}=\sum_{k=1}^{n} a_{k}$ be the n-th partial sum of the series.
Since $\sum_{k=1}^{\infty} a_{k}$ converges, $\lim _{n \rightarrow \infty} S_{n}=S$ for some $s \in \mathbb{C}$.

$$
\text { Thus, } \begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left[\left(a_{1}+a_{2}+\ldots+a_{n}\right)-\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[S_{n}-S_{n-1}\right] \\
& =\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1} \\
& =S-s=0
\end{aligned}
$$

Thus,
(8) (a)

Consider the k-th partial sum

$$
S_{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}
$$

We will show that $\left(s_{k}\right)_{k=1}^{\infty}$ is unbounded and hence cannot converge.
We look at a sub-series.
Note that

$$
\begin{aligned}
S_{2^{\circ}}=S_{1} & =1 \\
S_{2^{1}}=S_{2} & =1+\frac{1}{2} \\
S_{2^{2}}=S_{4} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right) \\
& \geqslant 1+\frac{1}{2}+\underbrace{\left(\frac{1}{4}+\frac{1}{4}\right.}) \\
& =1+\frac{1}{2}+\frac{1}{2}=1+2 \cdot \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
S_{2^{3}} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right) \\
& \geqslant 1+\frac{1}{2}+\underbrace{\frac{1}{4}+\frac{1}{4}}_{2})+\underbrace{\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right.}_{4}) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+3 \cdot \frac{1}{2}
\end{aligned}
$$

In general,

$$
S_{2^{k}} \geqslant 1+k \cdot \frac{1}{2}
$$

Thus, $\quad S_{2^{k}} \rightarrow \infty$ as $k \rightarrow \infty$.
Therefore, $\left(S_{k}\right)_{k=1}^{\infty}$ is unbounded and thus diverges.
So, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(8)(b) Let $p \in \mathbb{R}$ with $p \leq 1$.
case 1: Suppose $p=1$. Then $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges by $8(a)$.

Case 2: Suppose $p<1$.
Then, $\frac{1}{n^{p}}>\frac{1}{n}$ for all $n \geqslant 1$.
Thus, by the comparison test x since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, se does $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.

