

Summary of last time Theorem: SSE is open. S is connected iff S is puthconnected. Proof: (D) Suppose S is open and Connected Fix aES. Let there exists a piecewire for smooth curve & connecting of a to x where & lies in S A=Zxes A = S.Joal: Show We did a Q , bunch of stuff. XEA picture

Then there exists c E AND(Zjr). Since CEA there exists a path & lying in A sturting at a and ending at C. Let B be the straight line starting at c and ending at Z. lies in $D(z;r) \leq S$. B

Then X+B connects a to Z Via a path through S. That would imply ZEA. contradiction. Thus, $D(z_{jr}) \leq B$ So, Bisopen. Identity Theorem analytic Let f and g be in a region A (open & path-connected/connected) sequence A Suppose there is a - Z, Z, Z,) uf distinct points

Z, Z, Z, Z, Z, Z, Z, Y,
in A converging to Z.
$$(A$$
.
Suppose $f(Z_n) = g(Z_n)$
for $n \ge 1$.
Then $f(Z) = g(Z)$ for all
ZEA.
Proof: Let $h(Z) = f(Z) - g(Z)$.
WTS $h(Z) = 0$ $\forall Z \in A$.
We know h is analytic on A
and $h(Z_n) = 0$ $\forall n \ge 1$.
Since h is continuous on A,
 $0 = \lim_{n \to \infty} h(Z_n) \stackrel{{}_{\sim}}{=} h(\lim_{n \to \infty} Z_n) = h(Z_n)$

So, $h(z_0) = D$. So, Zo is not an isolated zero of h. is an isolated (Why?) Suppose Z. Zero of h. Then ZE>D where $h(z) \neq 0 \quad \forall z \in D^*(z_0; \varepsilon)$ But since Zn >Z. - - - , $\exists N$ where if $n \ge N$ ($\xi_{-}, o \ge 0$); then $\sum_{n \in D(z_{0}, j \ge 0)}$ (Z_-20)<5 Contradiction

By HW 3 #7, there must exist a disc DEA centered

at Zo where h(Z) = 0 $\forall Z \in D$.) (· to

 $B = \{z \in A \mid \text{there exists a disc } D' \leq A \}$ with $z' \in D'$ and $h(w) = D \}$ $\forall w \in D'$

We know
$$z_0 \in B$$

using $D' = D$

from above.

Pic of ZEB (D(W))Voal: Show B=A Suppose B=A. We will show this leads to the contradiction that A is not connected.

Note B=\$\$ because ZoEB.

Since ZEB there exists a disc $D(z;p) \subseteq A$ where $h(w) = 0 \quad \forall w \in D(Z; p)$ WC want D(Z;P) SB. Pick WED(Zjp) Set p' = p - |Z - w| - -Then $D(w_{j}p') \leq D(z_{j}p)$ $(w_{j}, p') \leq D(z_{j}p)$ Then, $D(w;p') \leq A$ and h(w') = 0 $\forall w' \in D(w; p')$. So, WEB. Thus, $D(Z; e) \leq B$. And B is open.

A-B is open
Let
$$z \in A-B$$
.
WTS z is an interior pt of A-B.
case 1: Suppose $h(z) \neq 0$
By 4680 HW 4 #5, since h is
continuous at $z \in A$, there
exists a disc $D(z_{jr}) \subseteq A$
where $h(w) \neq 0 \forall w \in D(z_{jr})$
 $(w \cdot i)$
 $D(z_{jr})$

Thus,
$$\mathcal{D}(z;r) \subseteq A-B$$
.
[Because if you pizk $w \in \mathcal{D}(z;r)$
there is no dire around w where
the whole disc goes to 0.
So, z is interior to $A-B$
and $A-B$ is open.
Case 2: Suppose $h(z) = 0$
Since $z \notin B$ this implies that
 z is an isolated zero of h .
By HW 3 #7, there is a
disc $\mathcal{D}(z;r) \subseteq A$ where
 $h(w) \neq 0 \quad \forall w \in \mathcal{D}^*(z;r)$.
 $\mathfrak{D}'(z;r)$ (z)

Thus, if
$$W \in D^*(Z_jr)$$
, then $W \notin B$.
So, $D(Z_jr) \subseteq A - B$.
So, Z is an interior pt of $A - B$.
So, $A - B$ is upen.