$$
\begin{aligned}
& 5680 \\
& 5 / 10 / 23
\end{aligned}
$$

Ex: $\operatorname{Let} \underset{\infty}{ }$

$$
g(z)=\sum_{n=1}^{\infty} \frac{2^{n}}{z^{n}}
$$

Show g is analytic on

$$
A=\{z|2<|z|\}
$$

proof:
Let

$$
D=\overline{D\left(z_{0} ; r\right)} \subseteq A
$$

be a closed disc.

Need to show that $g(z)$ converges uniformly on D.

Let $\delta=\left|z_{0}\right|-r=\left|z_{0}\right|-2$
Then if $z \in D$, then $|z| \geqslant \delta>2$
So if $z \in D$, then

$$
\left|\frac{2^{n}}{z^{n}}\right|=\frac{2^{n}}{|z|^{n}} \leq \frac{2^{n}}{\delta^{n}}=\left(\frac{2}{\delta}\right)^{n}=M_{n}
$$

Note: Since $0<\frac{2}{\delta}<1$ because $z<\delta$.
So, $\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty}\left(\frac{2}{\delta}\right)^{n}$ is geometric $\begin{gathered}\text { and converges. } \\ \text { and }\end{gathered}$

By the WM-test
since $\left|\frac{2^{n}}{z^{n}}\right| \leq M_{n}$ if $z \in D$
and $\sum M_{n}$ converges,
we know $g(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{z^{n}}$
Converger viitormly on D.
By Analytic convengence thm, $g(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{z^{n}}$ is unalytic in A.

If $z \in A$, then

$$
\begin{equation*}
g^{\prime}(z)=\sum_{n=1}^{\infty}\left(2^{n} z^{-n}\right)^{\prime}=\sum_{n=1}^{\infty}-\frac{n 2^{n}}{z^{n+1}} \tag{0}
\end{equation*}
$$

HW 4-Part 2
(1) (g) $f(z)=\left(\frac{\cos (z)-1}{z}\right)^{2}, z_{0}=0$

$$
\begin{aligned}
& h(z)=\sum_{n=0}^{\infty} \frac{h^{(n)}(z)}{n!}\left(z-z_{0}\right)^{n} \\
& h\left(z_{0}\right)=0
\end{aligned}
$$

let $k \geqslant 1$ be the first time $h^{(k)}\left(z_{0}\right) \neq 0$. Then h has a zero of multipliaty k at z_{0}

$$
\begin{aligned}
& f(z)=\frac{(\cos (z)-1)^{2}}{z^{2}}=\frac{g(z)}{h(z)} \\
& g(0)=\cos (0)-1=1-1=0 \\
& g^{\prime}(0)=2(\cos (0)-1) \cdot(-\sin (0))=0
\end{aligned}
$$

$$
\begin{aligned}
g^{\prime \prime}(0)= \\
9
\end{aligned} \begin{aligned}
g^{\prime}(z)= & -2 \sin (z)(\cos (z)-1) \\
g^{\prime \prime}(z)= & -2 \cos (z)(\cos (z)-1) \\
& -2 \sin (z)[2(\cos (z)-1)(-\sin (z))) \\
\hline g(z)= & (\cos (z)-1)^{2} \\
= & \left(-1+1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)^{2} \\
= & \left(-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)^{2} \\
= & \frac{z^{4}}{4}+\cdots=z^{4}\left(\frac{1}{4}+\cdots\right)
\end{aligned}
$$

y has a zero of order 4 at $z_{0}=0$

$$
g^{\prime \prime}(0)=0
$$

$$
\begin{aligned}
& g^{\prime \prime \prime}(0)=0 \\
& g^{\prime \prime \prime \prime}(0) \neq 0
\end{aligned}
$$

9 has a zero of order 4 at $z_{0}=0$

$$
\begin{aligned}
& h(z)=z^{2} \\
& h^{\prime}(0)=2(0)=0 \\
& h^{\prime \prime}(0)=2 \neq 0
\end{aligned}
$$

h has a zero of order 2 at $z_{0}=0$

$$
\begin{gathered}
\text { at } z_{0}=0 \\
f(z)=\frac{(\cos (z)-1)^{2} \longleftarrow \text { zero of }}{z^{2} \leftarrow} \begin{array}{c}
\text { arden } 4 \\
\text { derides } \\
\text { ord }
\end{array}
\end{gathered}
$$

of has a removable singularity at $z_{0}=0$.
So, $\operatorname{Res}(f ; 0)=0$

$$
\frac{g}{h} \leftarrow \frac{g\left(z_{0}\right) \neq 0}{\substack{h\left(z_{0}\right)=0 \\ h^{\prime}\left(z_{0}\right) \neq 0}}
$$

$$
\begin{aligned}
& f(z)=\frac{\sin \left(\frac{\pi}{i} z\right)}{z^{4}-1}=\frac{g(z)}{h(z)} \\
& \begin{array}{l}
g(z)=\sin \left(\frac{\pi}{i} z\right) \\
h(z)=z^{4}-1
\end{array} \\
& \begin{array}{l}
g(z)=0 \quad \text { iff } \frac{\pi}{i} z=\pi k, k \in \mathbb{Z} \\
\text { iff } z=i k, k \in \mathbb{Z}
\end{array} \\
& h(z)=0 \quad \begin{array}{l}
\text { iff } z^{4}=1 \\
\text { iff } z=1,-1, i,-i \quad \begin{array}{l}
2 i \\
\phi_{i}^{2 i} \\
i-2 i
\end{array}
\end{array}
\end{aligned}
$$

case 1: $z= \pm 1$

$$
\begin{aligned}
& g(\pm 1)=\sin \left(\frac{\pi}{i}(\pm 1)\right) \neq 0 \\
& h(\pm 1)=(\pm 1)^{4}-1=0 \\
& h^{\prime}(\pm 1)=4(\pm 1)^{3} \neq 0
\end{aligned}
$$

So we get a pole of order 1 and

$$
\begin{aligned}
& \text { So we get }(f ; 1)=\frac{g(1)}{h^{\prime}(1)}=\frac{\sin \left(\frac{\pi}{\lambda}\right)}{4} \\
& \operatorname{Res}(f ;-1)=\frac{g(-1)}{h^{\prime}(-1)}=\frac{\sin \left(-\frac{\pi}{\lambda}\right)}{-4}
\end{aligned}
$$

case $2: \quad z=i$

$$
g(i)=\sin \left(\frac{\pi}{i} i\right)=\sin (\pi)=0
$$

$$
\begin{aligned}
g^{\prime}(\bar{\lambda}) & =\cos \left(\frac{\pi}{i} i\right) \cdot \frac{\pi}{i} \\
& =\cos (\pi) \cdot \frac{\pi}{\lambda}=-\frac{\pi}{i}
\end{aligned}
$$

9 has a zero of order 1 at $z_{0}=i$
g's Taylor series at $z_{0}=i$ is:

$$
\left[\begin{array}{c}
g \text { 's Taylor series at } z_{0}-1 \\
g(z)=\left[\begin{array}{c}
0+\frac{-\pi / i}{1}(z-i)+\ldots . \\
\hat{\uparrow} \\
g(i) \frac{g^{\prime}(i)}{1!}
\end{array}\right]
\end{array}\right.
$$

$$
\begin{aligned}
& h(z)=z^{4}-1 \\
& h(i)=0 \\
& h^{\prime}(i)=4(i)^{3}=-4 i \neq 0
\end{aligned}
$$

h has a Eco of order 1 at i.
f has a removable singularity at $z_{0}=i$ and

$$
\operatorname{Rer}(f ; i)=0
$$

$$
g(z)=\sum_{n=0}^{\infty} \frac{\sin (n) \cdot 5^{n}}{e^{2 n}}(z-1)^{n}
$$

Then,

$$
\left|\frac{\sin (n)-5^{n}}{e^{2 n}}\right||z-1|^{n} \leqslant \frac{5^{n}}{e^{2 n}}|z-1|^{n}
$$

Let's look ut

$$
\sum_{n=0}^{\infty} \frac{5^{n}}{e^{2 n}}|z-1|^{n}
$$

Ratio time ∇_{0}

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty}\left|\frac{5^{n+1}}{e^{2(n+1)}}\right| z-\left.1\right|^{n+1} \cdot \frac{e^{2 n}}{5^{n}} \cdot \frac{1}{\mid z-1)^{n}} \right\rvert\, \\
& =\lim _{n \rightarrow \infty} \frac{5}{e^{2}}|z-1|=\frac{5}{e^{2}}|z-1|
\end{aligned}
$$

We will get convergence when $\frac{5}{e^{2}}|z-1|<1$
or $|z-1|<\frac{e^{2}}{5}$.
Since $\sum_{n=0}^{\infty} \frac{5^{n}}{e^{2 n}}|z-1|^{n}$ converges

$$
\begin{aligned}
& n=0 e \\
& \text { when }|z-1|<\frac{e^{2}}{s}
\end{aligned}
$$

we get by the comparison test

$$
g(z)=\sum_{n=0}^{\infty} \frac{\sin (n) \cdot s^{n}}{e^{2 n}}(z-1)^{n}
$$

Converges absolutely when $|z-1|<\frac{e^{2}}{5}$.

So, the radius of convergence of g is at least $\frac{e^{2}}{5} \approx 1,4778$

$$
\begin{aligned}
g\left(1+\frac{e^{2}}{5}\right) & =\sum_{n=0}^{\infty} \frac{\sin (n) \cdot 5^{n}}{e^{2 n}}\left(1+\frac{e^{2}}{5}-1\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{\sin (n) \cdot 5^{n}}{e^{2 n}}\left(\frac{e^{2}}{5}\right)^{n} \\
& =\sum_{n=0}^{\infty} \sin (n)
\end{aligned}
$$

And $\lim _{n \rightarrow \infty} \sin (n)$ DNE By divergence thm, g's sum
doesn't converge at $1+\frac{e^{2}}{5}$
So, $R=\frac{e^{2}}{5}$ is $y^{\prime} s$ radius of convergence.

