Math 5680

$$
4 / 5 / 28
$$

Ex: HW 4-Part $7 \# 6$
Consider $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$
$f$ has isolated singularities at $0, i,-i$

$$
s \sqrt{\begin{array}{l}
z^{3}=0 \\
\rightarrow z=0 \\
z^{2}+1=0 \\
\rightarrow z= \pm i
\end{array}}
$$

Let's look at $z_{0}=0$.
Let $z \in D^{*}(0 ; 1)$.
Then,

$$
\begin{aligned}
& \text { Then, }\left(\frac{z+1}{z^{2}+1}\right) \leftarrow \varphi(z)!\text { I } \\
& z^{3} \\
& f\left(z-z_{0}\right)^{m}
\end{aligned}
$$

Let $\varphi(z)=\frac{z+1}{z^{2}+1}$. We have that $\varphi$ is analytic at $z_{0}=0$
and $\varphi(0)=\frac{0+1}{0^{2}+1}=1 \neq 0$.
So the theorem from Monday says that $z_{0}=0$ is a pole of order 3 and

$$
\operatorname{Res}(f ; 0)=\frac{\varphi^{(3-1)}(0)}{(3-1)!}=\frac{\varphi^{(2)}(0)}{2!}
$$

We have

$$
\begin{aligned}
& \text { We have } \\
& \begin{aligned}
\varphi^{\prime}(z) & =\frac{(1)\left(z^{2}+1\right)-(z+1)(2 z)}{\left(z^{2}+1\right)^{2}} \\
& =\frac{-z^{2}-2 z+1}{\left(z^{2}+1\right)^{2}}
\end{aligned}
\end{aligned}
$$

And

$$
\varphi^{(2)}(z)=\frac{(-2 z-2)\left(z^{2}+1\right)^{2}-2\left(z^{2}+1\right)(2 z)\left(-z^{2}-2 z+1\right)}{\left(z^{2}+1\right)^{4}}
$$

So,

$$
\varphi^{(21)}(0)=\frac{(-2)(1)^{2}-2(1)(0)(1)}{1}=-2
$$

Thus,

$$
\text { Thus, } \operatorname{Res}(f ; 0)=\frac{\varphi^{(2)}(0)}{2!}=\frac{-2}{2}=-1
$$

Let's double check this by finding the Laurent series in $D^{*}(0,1)$
Let $z \in D^{*}(0 ; 1)$
Then, $0<|z|<1$.
And,


$$
f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}
$$

$$
\begin{aligned}
&=(1+z) \cdot \frac{1}{z^{3}} \cdot \frac{1}{1+z^{2}} \\
&=(1+z) \cdot \frac{1}{z^{3}} \cdot \frac{1}{1-\left(-z^{2}\right)} \\
&=(1+z) \cdot \frac{1}{z^{3}} \cdot\left[1-z^{2}+z^{4}-z^{6}+\ldots\right] \\
& \begin{aligned}
\frac{1}{1-w}=1+w+w^{2}+\cdots
\end{aligned}=(1+z)\left[\frac{1}{z^{3}}-\frac{1}{z}+z-z^{3}+\ldots\right] \\
&\left.\begin{array}{rl}
|w|<1 \\
|z| & \left|z^{2}\right|<1 \\
\left|-z^{2}\right| & <1
\end{array}\right]=\frac{1}{z^{3}}-\frac{1}{z}+z-z^{3}+\cdots \\
&=\frac{1}{z^{2}}-1+z^{2}-z^{4}+\cdots \\
&+\frac{1}{z^{2}}-\frac{1}{z}-1+z+z^{2}-z^{3} \\
&-z^{4}+\cdots
\end{aligned}
$$

So, $\operatorname{Res}(f ; 0)=-1$.

What if $z_{0}=i ?_{0}$

$$
f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}
$$

Let $z \in D^{*}(i ; 1)$
Then,


$$
\begin{aligned}
f(z) & =\frac{z+1}{z^{3}(z+i)(z-i)} \\
& =\frac{\left(\frac{z+1}{z^{3}(z+i)}\right)}{(z-i)}-\frac{\phi(z)}{\left(z-z_{0}\right)^{\prime}}
\end{aligned}
$$

Let $\varphi(z)=\frac{z+1}{z^{3}(z+i)}$
$\varphi$ is analytic at $i$ and $\varphi(i)=\frac{i+1}{-i(2 i)} \neq 0$
So, the theorem says that $f$ has a pole of order I at $z_{0}=i$ and

$$
\begin{aligned}
\operatorname{Res}(f ; i) & =\frac{\varphi^{(1-1)}(i)}{(1-1)!}=\frac{\varphi^{(0)}(i)}{0!} \\
& =\varphi(i)=\frac{i+1}{-2 i^{2}}=\frac{i+1}{2} \\
& =\frac{1}{2}+\frac{1}{2} i
\end{aligned}
$$

Theorem: (on simple poles)
Suppose $f$ has an isolated
singularity at $z_{0}$.
Then, $z_{0}$ is a simple pole of $f$ iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$ exists and is non-zero.

Moreover, if $z_{0}$ is a simple pole then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Ex: Let $f(z)=\frac{\cos (z)}{z}$ and $z_{0}=0$ $z_{0}=0$ is an isolated singularity.

And,

$$
\begin{aligned}
\lim _{z \rightarrow 0} z \cdot \frac{\cos (z)}{z} & =\lim _{z \rightarrow 0} \cos (z) \\
& =\cos (0) \\
& =1 \neq 0
\end{aligned}
$$

So, we have a simple pole and $\operatorname{Res}(f ; 0)=1$.

Let's check:
If $z \neq 0$, then

$$
\begin{aligned}
\frac{\cos (z)}{z} & =\frac{1}{z}\left[1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right] \\
& =\frac{1}{z}-\frac{z}{2!}+\frac{z^{3}}{4!}-\frac{z^{5}}{6!}+\cdots \\
& \begin{array}{l}
\text { pole of order } 1 \\
\\
\operatorname{Res}(f ; 0)=1
\end{array}
\end{aligned}
$$

Theorem: Let $g$ and $h$ be analytic at $z_{0}$.
Suppose $g\left(z_{0}\right) \neq 0, h\left(z_{0}\right)=0$,

$$
h^{\prime}\left(z_{0}\right) \neq 0
$$

Then, $f(z)=\frac{g(z)}{h(z)}$ has a
simple pole at $z_{0}$ and

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

Ex: Let $f(z)=\frac{z}{z^{4}+4}$
Where are the singularities of $f$ ?

When $z^{4}+4=0$.
Solving:

$$
z^{4}=-4=4 e^{\pi i}
$$



$$
\begin{aligned}
& \text { roots: } \\
& z_{k}=4^{1 / 4} e^{\left(\frac{\pi}{4}+\right.} \\
& k=0,1,2,3 \\
& z_{0}=\sqrt{2} e^{\frac{\pi}{4} i} \\
& z_{1}=\sqrt{2} e^{\frac{3 \pi}{4} i} \\
& z_{2}=\sqrt{2} e^{\frac{5 \pi}{4} i} \\
& z_{3}=\sqrt{2} e^{\frac{7 \pi}{4} i}
\end{aligned}
$$



$$
\begin{aligned}
& e^{i \theta}=\cos (\theta)+i \sin (\theta) \\
& z_{0}=\sqrt{2}\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right]=\sqrt{2}\left[\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right] \\
&=1+i \\
& z_{1}=\sqrt{2}\left[\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right]=\sqrt{2}\left[-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right] \\
&=-1+i
\end{aligned}
$$

$$
\begin{aligned}
& z_{2}=-1-i \\
& z_{3}=1-i
\end{aligned}
$$



You can verity these are all simple poles and find the residues Let's check for one of them.
Let's check out $z_{0}=1+i$.

$$
f(z)=\frac{z}{z^{4}+4}=\frac{g(z)}{h(z)}
$$

Then,

$$
\begin{aligned}
& g(1+i)=1+i \neq 0 \\
& h(1+i)=0 \\
& h^{\prime}(1+i)=4(1+i)^{3} \neq 0
\end{aligned}
$$

$$
h^{\prime}(z)=4 z^{3}
$$

$g$ and $h$ one analytic everywhere and so are analytic at $1+i$.
The theorem says we have a simple pole and

$$
\begin{aligned}
& \text { pole and } \\
& \operatorname{Res}\left(f_{j} 1+i\right)=\frac{g(1+i)}{h^{\prime}(1+i)}=\frac{1+i}{4(1+i)^{3}} \\
&=\frac{1}{4} \cdot \frac{1}{(1+i)^{2}}
\end{aligned}
$$

