Math 5680 $4 / 3 / 23$

Theorem (Removable Singularity Thy) Let $z_{0} \in \mathbb{C}$. Suppose z_{0} is an isolated singularity of f.
Then, z_{0} is a removable singularity of f if one of the following conditions holds:
(1) f is bounded in some deleted ε-neighborhood of z_{0}
(2) $\lim _{z \rightarrow z_{0}} f(z)$ exists
(3) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$

Ex: $f(z)=\frac{\sin (z)}{z}$
$z_{0}=0$ is an is slated singularity.

Using (3) above we see

$$
\begin{aligned}
& \lim _{z \rightarrow 0}(z-0) \cdot \frac{\sin (z)}{z} \\
= & \lim _{z \rightarrow 0} \frac{z}{z} \cdot \frac{\sin (z)}{z^{2}} \\
= & \lim _{z \rightarrow 0} \sin (z) \stackrel{\rightharpoonup}{=} \sin (0)=0
\end{aligned}
$$

So we have a removable singularity at $z_{0}=0$.

Note that if $z \neq 0$, then

$$
\begin{aligned}
\frac{\sin (z)}{z} & =\frac{1}{z}\left[z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\frac{1}{7!} z^{7}+\cdots\right] \\
& =1-\frac{1}{3!} z^{2}+\frac{1}{5!} z^{4}-\frac{1}{7!} z^{6}+\cdots
\end{aligned}
$$

Define $\tilde{f}: \mathbb{C} \rightarrow \mathbb{C}$ where

$$
\tilde{f}(z)=1-\frac{1}{3!} z^{2}+\frac{1}{5!} z^{4}-\frac{1}{7!} z^{6}+\cdots
$$

Note that

$$
\tilde{f}(z)=\left\{\begin{array}{cc}
\frac{\sin (z)}{z} & \text { when } z \neq 0 \\
1 & \text { when } z=0
\end{array}\right.
$$

The power series for \tilde{f} converges on all of \mathbb{C}.
So, \tilde{f} is analytic on all of \mathbb{C}.
It removes the singularity at $z_{0}=0$.

Theorem: Let g and h each be analytic at z_{0}.
Suppose g has a zero of order $m \geqslant 0$ at Z_{0} and h has a zero of order $k>0$ at z_{0}.
$\left[\right.$ If $m=0$, this means $\left.g\left(z_{0}\right) \neq 0\right]$
(i) If $m \geqslant k$, then $f(z)=\frac{g(z)}{h(z)}$ has a removable singularity at z_{0}.
(ii) If $m<k$, then $f(z)=\frac{g(z)}{h(z)}$ has a pole of order $k-m$ at z_{0}.

Exit Let

$$
f(z)=\frac{\sin (z)}{z} \stackrel{g(z)=\sin (z)}{\leftarrow} h(z)=z
$$

Let $z_{0}=0$.
Note $g(0)=\sin (0)=0$
and $h(0)=0$
We have an isolated singularity at $z_{0}=0$.
Recall if $z \neq 0$, then

$$
\begin{aligned}
\sin (z) & =z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\frac{1}{7!} z^{7}+\cdots \\
& =z\left(1-\frac{1}{3!} z^{2}+\frac{1}{5!} z^{4}-\frac{1}{7!} z^{6}+\cdots\right) \\
& =z \varphi(z)
\end{aligned}
$$

where $\varphi(0) \neq 0$,

So, g has a zero of order $m=1$ at $z_{0}=0$.

And

$$
h(z)=z
$$

has a zero of order $k=1$ at $z_{0}=0$.
Thus, $m \geqslant k$ and the theorem says we have a removable singularity.
Ex: Let $f(z)=\frac{z}{\left(e^{z}-1\right)^{2}}=\frac{g(z)}{h(z)}$
Let $g(z)=z \quad \begin{aligned} & g\left(e^{z}-1\right)^{2} \\ & h(z)=0 \\ & g(0)=0\end{aligned}$ and $\left.h(z)=\left(e^{z}-1\right)^{2}\right\} h(0)=0$ f has an isolated singularity at $z_{0}=0$.
g has a zero of multiplicity $m=1$ at $z_{0}=0$.
What about h ? We need h's power series centered at $z_{0}=0$. It is:

$$
\begin{aligned}
h(z) & =\left(e^{z}-1\right)^{2} \\
& =\left(-1+e^{z}\right)^{2} \\
& =\left(-1+1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots\right)^{2} \\
& =\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)^{2} \\
& =\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots\right)\left(z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots\right)
\end{aligned}
$$

$$
\begin{aligned}
& =z^{2}+\left(\frac{1}{2}+\frac{1}{2}\right) z^{3}+\left(\frac{1}{6}+\frac{1}{4}+\frac{1}{6}\right) z^{4}+\cdots \\
& =z^{2}+z^{3}+\frac{7}{12} z^{4}+\cdots \\
& =z^{2}[\underbrace{\left.1+z+\frac{7}{12} z^{2}+\cdots\right]}_{\phi(z)}
\end{aligned}
$$

$=z^{2} \varphi(z)$, where $\varphi(0) \neq 0$.
So, $h(z)=\left(e^{z}-1\right)^{2}=z^{2} \varphi(z)$
has a zero of order $k=2$ at $z_{0}=0$.

Summary, zero of order $m=1$

$$
f(z)=\frac{z}{\left(e^{z}-1\right)^{2}} \quad \begin{aligned}
& \text { at } z_{0}=0 \\
& \text { at } z_{0}=0 .
\end{aligned}
$$ at $z_{0}=0$.

So, f has a pole of
order $k-m=2-1=1$ at $z_{0}=0$.

But what's the residue?
The next theorem will help.

Theorem (On poles of order m) Let f have an isolated singularity at $z_{0} \in \mathbb{C}$.
Then z_{0} is a pole of order m iff $f(z)$ can be written in the form $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ for all z in some deleted neighborhood $D^{*}\left(z_{0} j r\right)$, where φ is analytic at z_{0} and $\phi\left(z_{0}\right) \neq 0$.
Moreover if this is the case then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{\varphi^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

Ex: $f(z)=\frac{z}{\left(e^{z}-1\right)^{2}}$
Suppose $z \neq 0$.
Then,

$$
\begin{aligned}
\frac{z}{\left(e^{z}-1\right)^{2}} & =\frac{z}{\left(z^{2}+z^{3}+\frac{7}{12} z^{4}+\cdots\right)} \\
& =\frac{z}{z^{2}\left(1+z+\frac{7}{12} z^{2}+\cdots\right)} \\
& =\frac{1}{z\left(1+z+\frac{7}{12} z^{2}+\cdots\right)} \\
& =\frac{1\left(1+z+\frac{7}{12} z^{2}+\cdots\right)}{z}
\end{aligned}
$$

$$
=\frac{\varphi(z)}{z}
$$

Theorem says we have a pole of order $m=1$, and

$$
\begin{aligned}
\operatorname{Res}(f ; 0) & =\frac{\varphi^{(m-1)}(0)}{(m-1)!} \\
& =\frac{\varphi^{(0)}(0)}{0!} \\
& =\varphi(0) \\
& =\frac{1}{1+0+\frac{7}{12} \cdot 0^{2}+\cdots} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& 1+z+\frac{7}{12} z^{2}+\cdots \frac{1-z+\frac{5}{12} z^{2}+\cdots}{1} \\
& \frac{-\left(1+z+\frac{7}{12} z^{2}+\cdots\right)}{-z-\frac{7}{12} z^{2}-\cdots} \\
& \frac{-\left(-z-z^{2}-\cdots\right)}{\frac{5}{12} z^{2}+\cdots} \\
& \begin{aligned}
&\left(\frac{1}{\left.1+z+\frac{7}{12} z^{2}+\cdots\right)}\right. \\
& z=\frac{1-z+\frac{5}{12} z^{2}+\cdots}{z} \\
&=\frac{1}{z}-1+\frac{5}{12} z+\cdots
\end{aligned} \\
& \begin{aligned}
1+\cdots
\end{aligned} \\
&
\end{aligned}
$$

