Math 5680

$$
4 / 26 / 23
$$

Improper integrals involving sine and cosine

Sometimes if we want to evaluate

$$
\int_{-\infty}^{\infty} f(x) \sin (a x) d x \text { or } \int_{-\infty}^{\infty} f(x) \cos (a x) d x
$$

where $x \in \mathbb{R}, f(x) \in \mathbb{R}, a>0, a \in \mathbb{R}$, then we can use

$$
\begin{aligned}
& \text { then we can use } \\
& \text { R } f(x) \cos (a x) d x+i \int_{-R}^{R} f(x) \sin (a x) d x \\
& \begin{aligned}
& \int_{-R} \int_{-R}^{i a x}= \\
& \cos (a x)+i \sin (a x)
\end{aligned}
\end{aligned}
$$

to yether with the fact that $\left|e^{i a z}\right|=e^{-a y}$ is bounded when $y \geqslant 0$

Ex: Let's show that

$$
\int_{-\infty}^{\infty} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x=\frac{2 \pi}{e^{3}}
$$

Note that

$$
\frac{\text { cos that }}{\left((-x)^{2}+1\right)^{2}}=\frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} \text { for all } x
$$

So we have an even function. Thus,

$$
\begin{aligned}
& \text { So we have an even function. } \\
& \int_{-\infty}^{\infty} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x=\underbrace{\lim _{R \rightarrow \infty} \int_{-R} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x}_{\text {Cauchy principle value }}
\end{aligned}
$$

Cauchy principle value
Consider the function $\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}}$
On the real axis when $z=x$ we get

$$
\operatorname{Re}\left(\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}}\right)=\operatorname{Re}\left(\frac{e^{i 3 x}}{\left(x^{2}+1\right)^{2}}\right)
$$

$$
=\operatorname{Re}\left(\frac{\cos (3 x)+i \sin (3 x)}{\left(x^{2}+1\right)^{2}}\right)=\frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}}
$$

Note that $\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}}$ is analytic everywhere except when $z^{2}+1=0$ which is when $z= \pm i$.
Let $R>1$ and C_{R} be the top half of the circle of radius R oriented counter-cloclowise. Let X_{R} be the straight line from $-R$ to R followed by C_{R}.

By the residue theorem,

$$
\int_{\gamma_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z=2 \pi i \operatorname{Res}\left(\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} g i\right)
$$

$$
\begin{aligned}
& \text { And we have } \\
& \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}}=\frac{e^{i 3 z}}{((z+i)(z-i))^{2}}=\frac{e^{i 3 z}}{(z+i)^{2}} \\
& (z-i)^{2} \\
& \varphi \text { is analytic at } i=\frac{\Phi(z)}{(z-i)^{2}}
\end{aligned}
$$

and $\varphi(i)=\frac{e^{i 3(i)}}{(2 i)^{2}}=\frac{e^{-3}}{-4} \neq 0$
Thus, we have a pole of order 2

$$
\begin{aligned}
& \text { at } i \text { and } \\
& \operatorname{Res}\left(\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} ; i\right)=\frac{\phi^{(2-1)}(i)}{(2-1)!}=\phi^{\prime}(\bar{i})
\end{aligned}
$$

We have $\varphi(z)=(z+i)^{-2} \cdot e^{i 3 z}$ and $\varphi^{\prime}(z)=-2(z+i) e^{-3}+(z+i) e^{-i} 3 z(3 i)$

$$
\begin{aligned}
\text { So, } \varphi^{\prime}(i) & =-2(2 i)^{-3} e^{-3}+(2 i)^{-2}(3 i) e^{-3} \\
& =e^{-3}\left[\frac{-2}{(2 i)^{3}}+\frac{3 i}{(2 i)^{2}}\right] \\
& =\frac{1}{e^{3}}\left[\frac{-2}{-8 i}+\frac{3 i}{-4}\right] \\
& =\frac{1}{e^{3}}\left[-\frac{1}{4} i-\frac{3}{4} i\right]=\frac{-i}{e^{3}}
\end{aligned}
$$

Thus,

$$
\int_{\gamma_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z=2 \pi i\left(\frac{-i}{e^{3}}\right)=\frac{2 \pi}{e^{3}}
$$

So,

$$
\int_{-R}^{\int_{-R}^{R}} \frac{e^{i 3 x}}{\left(x^{2}+1\right)^{2}} d x+\int_{C_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z=\frac{2 \pi}{e^{3}}
$$

Note

$$
\begin{gathered}
\int_{-R}^{R} \frac{e^{i 3 x}}{\left(x^{2}+1\right)^{2}} d x=\underbrace{\int_{-R}^{R} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x+i \int_{-R}^{R} \frac{\sin (3 x)}{\left(x^{2}+1\right)^{2}} d x}_{-R} \\
e^{i 3 x}=\cos (3 x)+i \sin (3 x)
\end{gathered}
$$

Taking the real part of $(*)$ we get

$$
\int_{-R}^{T a k i n g ~ t h e ~ r e a l ~} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x+\operatorname{Re}\left[\int_{C_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z\right]=\frac{2 \pi}{e^{3}}
$$

Goal: Show $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z=0$.
Let $z=x+i y$ live on C_{R}.
So, $y \geqslant 0$.
Then, $|z|=R$.
Then,

Also,

$$
\begin{aligned}
\left|e^{i 3 z}\right| & =\left|e^{i 3(x+i y)}\right|=\left|e^{3 i x-3 y}\right| \\
& =\underbrace{\left|e^{i 3 x}\right|}_{1}\left|e^{-3 y}\right|=\left|e^{-3 y}\right| \\
& =e^{-3 y}=\frac{1}{e^{3 y}} \leq \mid \text { since } y \geqslant 0 .
\end{aligned}
$$

So, in summary if $z \in C_{R}$ then

$$
\left|\frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}}\right| \leqslant \frac{1}{\left(R^{2}-1\right)^{2}}
$$

So,

$$
\left|\int_{C_{R}} \frac{e^{i 3 z}}{\left(z^{2}+1\right)^{2}} d z\right| \leqslant \frac{1}{\left(R^{2}-1\right)^{2}} \cdot \underbrace{\pi R}_{\substack{\text { arclength } \\ \text { of } C_{R}}}
$$

$$
\begin{aligned}
& =\frac{\pi R}{R^{4}-2 R^{2}+1} \\
& =\frac{\pi / R^{3}}{1-2 / R^{2}+1 / R^{4}} \\
& \longrightarrow \frac{0}{1-0+0}=0 \\
& \operatorname{as} R \rightarrow \infty .
\end{aligned}
$$

Let $R \rightarrow \infty$ in $(* *)$ and you get that

$$
\int_{-\infty}^{\infty} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2}} d x=\frac{2 \pi}{e^{3}}
$$

