Math 5680

$$
4 / 17 / 23
$$

Recall from last week: Want $\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x$

$$
\begin{aligned}
& f(z)=\frac{z^{2}}{z^{6}+1} \\
& z_{0}=e^{i^{\pi / 6}} \\
& z_{1}=e^{i^{3 \pi / 6}} \\
& z_{2}=e^{i^{5 \pi / 6}}
\end{aligned}
$$

$$
\int_{\gamma_{R}} f(z) d z=\int_{C_{R}} f(z) d z+\int_{-R}^{R} f(x) d x
$$

and also

$$
\begin{aligned}
& \text { and also } \\
& \int_{\gamma_{R}} f(z) d z=2 \pi i \sum_{k=1}^{3} \operatorname{Res}\left(f_{j} z_{k}\right)
\end{aligned}
$$

Let's calculate the residues. z_{0}, z_{1}, z_{2} are all simple poles.

$$
\begin{aligned}
& \text { why? } \\
& f(z)=\frac{z^{2}}{z^{6}+1}=\frac{g(z)}{h(z)} \\
& g\left(z_{k}\right)=z_{k}^{2} \neq 0 \\
& h\left(z_{k}\right)=0 \\
& h^{\prime}\left(z_{k}\right)=6 z_{k}^{5} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& z_{0}=e^{\frac{\pi}{6} i} \\
& z_{1}=e^{\frac{3 \pi}{6} i} \\
& z_{2}=e^{\frac{5 \pi}{6} i}
\end{aligned}
$$

So, we have simple poles and $\operatorname{Res}\left(f_{j} z_{k}\right)=\frac{g\left(z_{k}\right)}{h^{\prime}\left(z_{k}\right)}=$

$$
=\frac{z_{k}^{2}}{6 z_{k}^{5}}=\frac{1}{6} \cdot \frac{1}{z_{k}^{3}}
$$

$$
\begin{aligned}
\text { So, } \\
\begin{aligned}
\operatorname{Res}\left(f ; z_{0}\right) & =\frac{1}{6}\left(\frac{1}{e^{\pi i / 6}}\right)^{3}=\frac{1}{6}\left(\frac{1}{e^{3 \pi \lambda / 6}}\right) \\
& =\frac{1}{6}\left(\frac{1}{e^{\pi i / 2}}\right)=\frac{1}{6}\left(\frac{1}{i}\right) \\
& =\frac{1}{6}(-i)=\frac{-i}{6} \\
\operatorname{Res}\left(f ; z_{1}\right) & =\frac{1}{6} \frac{1}{z_{1}^{3}}=\frac{1}{6}\left(\frac{1}{3 \pi i / 6}\right)^{3} \\
& =\frac{1}{6}\left(\frac{1}{i}\right)^{3}=\frac{1}{6}\left(\frac{1}{-i}\right) \\
& =(1 / 6)(i)=\pi / 6
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Res}\left(f ; z_{2}\right) & =\frac{1}{6} \frac{1}{z_{2}^{3}}=\frac{1}{6}\left(\frac{1}{e^{5 \pi i / 6}}\right)^{3} \\
\frac{15 \pi}{6}=2 \pi+\frac{\pi}{2} & =\frac{1}{6}\left(\frac{1}{e^{15 \pi \lambda / 6}}\right)=\frac{1}{6}\left(\frac{1}{e^{\pi i / 2}}\right) \\
& =\frac{1}{6}\left(\frac{1}{\lambda}\right)=-\frac{\hat{\lambda}}{6}
\end{aligned}
$$

Thus,

$$
\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z=\underbrace{2 \pi i\left[\frac{-i}{6}+\frac{i}{6}-\frac{i}{6}\right]}_{\pi / 3}
$$

So,

$$
\int_{-R}^{R} \frac{x^{2}}{x^{6}+1} d x=\frac{\pi}{3}-\int_{C_{R}} \frac{z^{2}}{z^{6}+1} d z
$$

Let's let $R \rightarrow \infty$.
Let's show $\lim _{R \rightarrow \infty} \int_{c_{R}} \frac{z^{2}}{z^{6}+1} d z=0$
Let $z \in C_{R}$.
Then, $|z|=R$.

Thus,

Thus, for $z \in C_{R}$ we have

$$
\begin{gathered}
\left|\frac{z^{2}}{z^{6}+1}\right|=\frac{|z|^{2}}{\left|z^{6}+1\right|} \leqslant \frac{R^{2}}{R^{6}-1} \\
|z|^{2}=R^{2} \\
\left|z^{6}+1\right| \geqslant R^{6}-1
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \left|\int_{C_{R}} \frac{z^{2}}{z^{6}+1} d z\right| \leq \underbrace{\substack{\text { length } \\
\text { of } \\
C_{R}}}_{\substack{\text { bound } \\
\text { on } \\
\text { on } C_{R} \\
R^{6}-1}} \underbrace{\frac{R^{2}}{R^{6}}} \cdot \pi R \\
& =\frac{\pi R^{3}}{R^{6}-1}=\frac{\pi\left(\frac{1}{R^{3}}\right)}{1-\frac{1}{R^{3}}} \rightarrow \\
& \longrightarrow \frac{\pi(0)}{1-0}=0 \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

Thus,

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{x^{2}}{x^{6}+1} d x=\frac{\pi}{3}-\underbrace{\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{2}}{z^{6}+1} d z}_{0}
$$

So, $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{6}+1} d x=\frac{\pi}{3}$
Since f is an even function

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x=\frac{1}{2}\left(\frac{\pi}{3}\right)=\frac{\pi}{6}
$$

Application I - Definite integrals involving sine and cosine

Ex: We will calculate

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos (\theta)}
$$

Let $z=e^{i \theta}$ where $0 \leq \theta \leq 2 \pi$.
Let γ be the curve traced out by this equation.

$$
\begin{aligned}
& e^{i \theta}=\cos (\theta)+i \sin (\theta \mid \\
& \left|e^{i \theta}\right|=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } z=e^{i \theta} \\
& d z=i e^{i \theta} d \theta \\
& d \theta=\frac{d z}{i e^{i \theta}}=\frac{d z}{i z} \\
& \cos (\omega)=\frac{e^{i \omega}+e^{-i \omega}}{2} \\
& \sin (\omega)=\frac{e^{i \omega}-e^{-i \omega}}{2 i} \\
& \cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{z+z^{-1}}{2}=\frac{z+\frac{1}{z}}{2} \\
& \text { So, } \\
& \int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos (\theta)}=\int_{\gamma} \frac{\frac{1}{i z} d z}{5-4\left(\frac{z+1 / z}{2}\right)} \\
& \text { Why? } \int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(\theta)) \cdot \gamma^{\prime}(\theta) d \theta \\
& \begin{array}{l}
\int_{\gamma} \frac{\frac{1}{i z} d z}{5-4\left(\frac{z+\frac{1}{z}}{2}\right)}=\int_{0}^{\gamma \pi} \frac{\frac{1}{i e^{i \theta}}}{5-4\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right.} \cdot i e^{i \theta} d \theta \\
\begin{array}{l}
\gamma(\theta)=e^{i \theta}, 0 \leq \theta \leq 2 \pi \\
\gamma^{\prime}(\theta)=i e^{i \theta}
\end{array}
\end{array}
\end{aligned}
$$

$$
=\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos (\theta)}
$$

We have

$$
\begin{aligned}
& \int_{\gamma} \frac{\frac{1}{i z} d z}{5-4\left(\frac{z+1 / z}{2}\right)}=\frac{1}{i} \int_{\gamma} \frac{1}{5-2 z-\frac{2}{z}} \cdot \frac{1}{z} d z \\
& =\left(\frac{1}{i} \int_{\gamma} \frac{d z}{-2 z^{2}+5 z-2}\right. \\
& =i \int_{\gamma} \frac{d z}{2 z^{2}-5 z+2}
\end{aligned}
$$

When is $2 z^{2}-5 z+2=0$?
When $z=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(2)}}{2(2)}$

$$
=\frac{5 \pm \sqrt{9}}{4}=2, \frac{1}{2}
$$

Thus,

$$
\begin{aligned}
& i \int_{\gamma} \frac{d z}{2 z^{2}-5 z+2}=i \int_{\gamma} \frac{d z}{2(z-2)\left(z-\frac{1}{2}\right)} \\
& =i\left[2 \pi i \operatorname{Res}\left(f_{j} \frac{1}{2}\right)\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Res}\left(f ; \frac{1}{2}\right)=\phi^{(1-1)}\left(\frac{1}{2}\right) /(1-1)_{0}^{\prime}=\varphi\left(\frac{1}{2}\right)= \\
& f(z)=\frac{\frac{1}{2} \cdot \frac{1}{(z-2)}}{(z-1 / 2)}=\frac{\varphi(z)}{z-1 / 2}=-\frac{1}{3} \\
& \varphi \text { is analytic at } 1 / 2, \varphi\left(\frac{1}{2}\right) \neq 0 \\
& 1 / 2 \text { is a simple pole }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos (\theta)} & =i\left[2 \pi i \operatorname{Res}\left(f ; \frac{1}{2}\right)\right] \\
& =i\left[2 \pi i\left(-\frac{1}{3}\right)\right] \\
& =2 \pi / 3
\end{aligned}
$$

In general, suppose $R(x, y)$ is a rational function [ratio of polynomials] in x and y whose denominator does not vanish on the unit circle. To evaluate

$$
\begin{aligned}
& \text { To evaluate } \\
& \int_{0}^{2 \pi} R(\cos (\theta), \sin (\theta)) d \theta
\end{aligned}
$$

make the substitution $z=e^{i \theta}$ where $0 \leq \theta \leq 2 \pi$ and use

$$
\begin{aligned}
& \text { where } 0 \leq \theta \leq 2 \pi \text { and } \\
& \cos (\theta)=\frac{1}{2}\left(z+\frac{1}{z}\right), \sin (\theta)=\frac{1}{2 i}\left(z-\frac{1}{z}\right)
\end{aligned}
$$

$d \theta=\frac{d z}{i z}$. Then use the residue theorem
one we had was $R(x, y)=\frac{1}{5-4 x}$

