Math 5680

$$
4 / 12 / 23
$$

Topic 5 - The Residue Theorem
Theorem (Cauchy's Residue Theorem) Let γ be a simple, closed, piecewise smooth curve, oriented counterclockwise.
If f is analytic inside and on γ except for a finite number of isolated singularities $z_{1}, z_{2}, \ldots, z_{n}$ of the function f that lie inside γ, then

proof: For each Z_{k} there is a number $r_{k}>0$ where f is analytic on $D^{*}\left(z_{k} j r_{k}\right)$ and $D\left(z_{k} j r_{k}\right)$ lies inside γ. Pick each r_{k} so that none of these deleted neighborhoods
over lap. Let γ_{k} be a counth-clockwise oriented circle centered at z_{k} and contained inside $D^{*}\left(z_{k} ; r_{k}\right)$.

From Math 4680, since f is analytic on and in-between
γ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ we know

$$
\int_{\gamma} f=\sum_{k=1}^{n} \int_{\gamma_{k}} f
$$

Let's take a look at $\int_{\gamma_{k}} f$.
Inside of $D^{*}\left(z_{k}, r_{k}\right)$ we have get a Laurent series:

$$
\begin{aligned}
& \text { get a Laurent series: } \\
& f(z)=\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{k}\right)^{n}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{k}\right)^{n}
\end{aligned}
$$

Recall: $b_{l}=\frac{1}{2 \pi i} \int_{\gamma_{k}} f(z)$

$$
l=1 \Longleftrightarrow b_{1}=\frac{1}{2 \pi i} \int_{\gamma_{k}} f(z) d z
$$

$$
b_{i}=\operatorname{Res}\left(f ; z_{k}\right)
$$

So, $\int_{\gamma_{k}} f=2 \pi i \operatorname{Res}\left(f ; z_{k}\right)$
Thus, $\quad \int f=\sum_{k=1}^{n} \int_{\gamma_{k}} f$

$$
=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f ; z_{k}\right)
$$

Ex:
Consider $\int_{\gamma} \frac{5 z-2}{z(z-1)} d z$
where γ is the circle $|z|=2$ oriented counterclockwise.
Let $f(z)=\frac{5 z-2}{z(z-1)}$
f has isolated singularities

$$
z_{1}=0, z_{2}=1
$$

 inside of $\gamma_{\text {a }}$
Residue theorem says

$$
\int_{\gamma} f=2 \pi i \operatorname{Res}(f ; 0)+2 \pi i \operatorname{Res}(f ; 1)
$$

Let calculate Res $(f ; 0)$ first
Note that

$$
\begin{aligned}
& \text { Note that } \\
& f(z)=\frac{5 z-2}{z(z-1)}=\frac{\left(\frac{5 z-2}{z-1}\right)}{z}=\frac{\varphi(z)}{z}
\end{aligned}
$$

where $\varphi(z)=\frac{5 z-2}{z-1}$ is analytic at 0 and $\varphi(0)=\frac{-2}{-1}=2 \neq 0$.
From our theorem in class we have a pole of order $m=1$ And $\operatorname{Res}(f ; 0)=\frac{\varphi^{(m-1)}(0)}{(m-1)!}$

$$
\begin{aligned}
& =\frac{\varphi(0)}{0!} \\
& =\varphi(0)=2
\end{aligned}
$$

Let's calculate $\operatorname{Res}(f ; l)$

$$
\begin{aligned}
& \text { We have } \\
& f(z)=\frac{5 z-2}{z(z-1)}=\frac{5 z-2}{z^{2}-z}=\frac{g(z)}{h(z)}
\end{aligned}
$$

where $g(z)=5 z-2, h(z)=z^{2}-z$ g and h are analytic at 1 .

$$
\begin{aligned}
& g(1)=3 \neq 0 \quad h^{\prime}(z)=2 z-1 \\
& h(1)=0 \\
& h^{\prime}(1)=2(1)-1=1 \neq 0
\end{aligned}
$$

So, f has a simple pole at 1 .

And,

$$
\left.\operatorname{Res}\left(f_{j}\right)\right)=\frac{g(1)}{h^{\prime}(1)}=\frac{3}{1}=3
$$

Thus,

$$
\begin{aligned}
\int_{\gamma} f & =2 \pi i[\operatorname{Res}(f ; 0)+\operatorname{Res}(f ; 1)] \\
& =2 \pi i[2+3]=10 \pi i
\end{aligned}
$$

Topic 6-Applications to integrals
from notes
Application II- Improper integrals
Recall if $f(x)$ is a real-valued function for $x \in \mathbb{R}$ that is defined for $x \geqslant a$ then

$$
\int_{a}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{a}^{R} f(x) d x
$$

Similouly if f is defined for $x \leqslant a$ then

$$
\int_{-\infty}^{a} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{a} f(x) d x
$$

If f is defined for all $x \in \mathbb{R}$ then

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\left[\lim _{R \rightarrow \infty} \int_{-R}^{a} f(x) d x\right] \\
& +\left[\lim _{R \rightarrow \infty} \int_{a}^{R} f(x) d x\right]
\end{aligned}
$$

for any $a \in \mathbb{R}$.
$\int_{-\infty}^{\infty} f(x) d x$ exists iff both integrals on the right exist.

Fact: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is even [that is, $f(-x)=f(x)$ for all $x \in \mathbb{R}$]
If the Cauchy principal value of $f\left[\right.$ which is $\left.\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x\right]$ exists, then $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ exist for any $a \in \mathbb{R}$ and

$$
\begin{aligned}
& \text { exist for any } a \in \mathbb{R} \text { and } \\
& 2 \int_{0}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R} f(x) d x
\end{aligned}
$$

proof: Since f is even,

$$
\begin{aligned}
& \text { proof: Since } t \text { is even, } R \\
& \int_{-R}^{0} f(x) d x=\int_{0}^{R} f(x) d x=\frac{1}{2} \int_{-R}^{0} f(x) d x
\end{aligned}
$$

Take $R \rightarrow \infty$.

Ex: Let's calculate

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x
$$

Let $f(x)=\frac{x^{2}}{x^{6}+1}$.
Then, $f(-x)=\frac{(-x)^{2}}{(-x)^{6}+1}=f(x)$.
So, f is even.
Thus,

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x=\frac{1}{2} \lim _{R \rightarrow \infty}\left[\int_{-R}^{R} \frac{x^{2}}{x^{6}+1} d x\right]
$$

Think of f as being a complex function now, ie

$$
f(z)=\frac{z^{2}}{z^{6}+1}
$$

Let's find the singularities of f.
These occur when $z^{6}+1=0$.

$$
z^{6}=-1=1 \cdot e^{\pi i}
$$

roots:

$$
z_{k}=1^{1 / 6} \cdot e^{\left(\frac{\pi}{6}+\frac{2 \pi k}{6}\right) i}, k=0,1,2,3,4,5
$$

$$
\begin{aligned}
& z_{0}=e^{i^{\pi} / 6} \\
& z_{1}=e^{i^{3 \pi / 6}} \\
& z_{2}=e^{i^{5 \pi / 6}} \\
& z_{3}=e^{i^{7 \pi / 6}} \\
& z_{4}=e^{i^{9 \pi / 6}} \\
& z_{5}=e^{i^{11 \pi / 6}}
\end{aligned}
$$

Given $R>1$, let C_{R} be the upper half of the circle $|z|=R$ oriented counterclockwise. Let γ_{R} be the closed curve formed by going along the
x-axis from $-R$ to R and then going along C_{R}.

Thus,

$$
\int_{\gamma_{R}}^{\text {Thus, }} f(z) d z=\int_{C_{R}} f(z) d z+\underbrace{\int_{-R}^{R} f(x) d x}_{\begin{array}{c}
-R \\
\text { this part is } \\
\text { a real integral } \\
z=x \text { were } \\
-R \leq x \leq R
\end{array}}
$$

We will calculate

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i \sum_{k=1}^{3} \operatorname{Res}\left(f_{j} z_{k}\right)
$$

and we will show

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

This will allow us to calculate

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=2 \pi i \sum_{k=1}^{3} \operatorname{Res}\left(f_{j} z_{k}\right)
$$

