Math 5680

$$
3 / 8 / 23
$$

Today - Continue power series (topic 3)

Monday- back at school review for test new stuff if time

$$
\text { Weds - Test } 1
$$

Ex: Let's find the radius of convergence of

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\pi^{n}} z^{n}=-1+\frac{1}{\pi} z-\frac{1}{\pi^{2}} z^{2}+\frac{1}{\pi^{3}} z^{3}+\cdots
$$

Use the ratio test

$$
\begin{aligned}
& \text { Use the ratio test } \\
& \lim _{k \rightarrow \infty}\left|\frac{b_{k+1}}{b_{k}}\right|=\lim _{k \rightarrow \infty}|\underbrace{\frac{(-1)^{k}}{\pi^{k+1}} z^{k+1}}_{b_{k+1}} \cdot \underbrace{\frac{\pi^{k}}{(-1)^{k-1}} \cdot \frac{1}{z^{k}}}_{\frac{1}{b_{k}}}| \\
& =\lim _{k \rightarrow \infty}\left|\frac{z}{\pi}\right|=\frac{|z|}{\pi}
\end{aligned}
$$

The ratio test says the series will converge if $\frac{|z|}{\pi}<1$ and diverge if $\frac{|z|}{\pi}>1$.

We get convergence if $|z|<\pi$ and divergence if $|z|>\pi$.

Unknown on boundary of circle.
radius of convergence is $R=\pi$

Let's now use Taylor's theorem.

Ex: $f(z)=e^{z}$
Let's find the Taylor series for $f(z)=e^{z}$ at $z_{0}=0$.

$$
\begin{gathered}
\text { Taylor series is } \\
f(z)=e^{z} \\
f^{\prime}(z)=e^{z} \\
f^{\prime \prime}(z)=e^{z} \\
\vdots \\
\vdots \\
f^{(k)}(z)=e^{z}
\end{gathered} \quad \begin{aligned}
& \infty \\
& \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}(z-0)^{k}=\sum_{k=0}^{k} \\
& k
\end{aligned}
$$

$f(z)=e^{z}$ is analytic on all of \mathbb{C}.
By Taylor's theorem

$$
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
$$

for all $z \in \mathbb{C}$.
The radius of convergence is $R=\infty$

Ex: Let $f(z)=\log (1+z)$
where we are using the principal branch of \log.

4680 Recap

$$
\begin{aligned}
\log (\omega) & =\ln |\omega|+i \arg (\omega) \\
-\pi & <\arg (\omega)<\pi
\end{aligned}
$$

(principal branch)
This branch of \log is analytic on

$$
\frac{d}{d w} \log (w)=\frac{1}{w} \left\lvert\, A=\mathbb{C}-\left\{x+i y \left\lvert\, \begin{array}{l}
y=0 \\
x \leq 0
\end{array}\right.\right\}\right.
$$

$f(z)=\log (1+z)$ is analytic on

$$
B=\mathbb{C}-\left\{\begin{array}{l|l}
x+i y & \begin{array}{c}
x \leq-1 \\
y=0
\end{array}
\end{array}\right\}
$$

What's the Taylor series for f centered at $z_{0}=0$ and on what disc does it
converge to $f(z)=\log (1+z) \mathbb{R}_{0}$

By Taylor's theorem
the Taylor series for f centered at $z_{0}=0$ will converge to f in $D(0 ; 1)$.

$$
\begin{gathered}
f(z)=\log (1+z) \\
f^{\prime}(z)=(1+z)^{-1} \\
f^{\prime \prime}(z)=-(1+z)^{-2} \\
f^{\prime \prime \prime}(z)=2(1+z)^{-3} \\
f^{(4)}(z)=-3!(1+z)^{-4} \\
f^{(5)}(z)=4!(1+z)^{-5} \\
\vdots \\
f^{(k)}(z)=\frac{(-1)^{k-1}(k-1)!}{(1+z)^{k}}
\end{gathered}
$$

Taylor series at

$$
z_{0}=0 \text { is }
$$

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^{k}
$$

$$
\sum_{k=1}^{\infty} \frac{\left(\frac{(-1)^{k-1}(k-1)!}{(1+0)^{k}}\right)}{k!} z^{k}
$$

$$
=\sum_{k=1}^{\infty} \frac{(-1)^{k-}(k-1)!}{k \cdot[(k-1)!]} z^{k}
$$

$$
\begin{aligned}
f^{(0)}(0) & =\log (1+0) \\
& =\log (1) \\
& =0
\end{aligned}
$$

Thus, $\log (1+z)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} z^{k}$
for all $z \in D(0 ; 1)=\{z| | z \mid<1\}$
$\underset{\text { center radius }}{\uparrow}$

Ex: For all $z \in \mathbb{C}$ we have

$$
\begin{aligned}
\sin (z) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k+1}}{(2 k+1)!} \\
& =z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\frac{z^{9}}{9!}-\cdots \\
\cos (z) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{(2 k)!}
\end{aligned}
$$

$$
=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\frac{z^{8}}{8!}-\cdots
$$

Theorem: Let $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ be power series with the same center z_{0} and radii of convergence $R_{1}>0$ and $R_{2}>0$, respectively.
Let $R=\min \left\{R_{1}, R_{2}\right\}$. Let

$$
\begin{aligned}
& \text { Let } R=\min \left\{R_{1}, K_{2}\right\} . \\
& c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}
\end{aligned}
$$

Then, $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ has radius of convergence $\geqslant R$ and inside this circle of convergence we have

$$
\begin{aligned}
& \text { of convergence we have } \\
&\left(\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}\right)= \sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \\
& \begin{array}{c}
\text { Hoffman/ } \\
\text { Marsden book } \\
\text { pg } 215
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots\right]\left[b_{0}+b_{1}\left(z-z_{0}\right)+b_{2}\left(z-z_{0}\right)^{2}+\cdots\right.} \\
& =\underbrace{a_{0} b_{0}}_{c_{0}}+\underbrace{\left(a_{0} b_{1}+a_{1} b_{0}\right)}_{c_{1}}\left(z-z_{0}\right)^{\prime} \\
& +\underbrace{\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)\left(z-z_{0}\right)^{2}+\cdots}_{c_{2}}
\end{aligned}
$$

Example to illustrate the next tine...

$$
f(z)=1-\cos \left(z^{5}\right), \quad z_{0}=0
$$

Then, $f(0)=1-\cos \left(0^{5}\right)=1-\cos (0)=1-1=0$
For all $z \in \mathbb{C}$ we have that

$$
\begin{aligned}
f(z) & =1-\cos \left(z^{5}\right) \\
& =1-\left[1-\frac{\left(z^{5}\right)^{2}}{2!}+\frac{\left(z^{5}\right)^{4}}{4!}-\frac{\left(z^{5}\right)^{6}}{6!}+\frac{\left(z^{5}\right)^{8}}{8!}-\cdots\right] \\
& =\frac{z^{10}}{2!}-\frac{z^{20}}{4!}+\frac{z^{30}}{6!}-\frac{z^{40}}{8!}+\cdots \\
& =z^{10}\left[\frac{1}{2!}-\frac{z^{10}}{4!}+\frac{z^{20}}{6!}-\frac{z^{30}}{8!}+\cdots\right]
\end{aligned}
$$

$$
\varphi(z)=\frac{1}{\varphi(0)} \neq 0
$$

So,

$$
f(z)=z^{10} \varphi(z)
$$

Where φ is also analytic at 0$] \begin{aligned} & \text { more } \begin{array}{l}\text { next } \\ \text { time }\end{array}\end{aligned}$ and $\varphi(0) \neq 0$.
Next time we are going to say that f has a zero at $z_{0}=0$ of order 10.

