Math 5680 3/8/23

$$\frac{E_{X}:}{Let's find the radius of}$$
Convergence of
$$\frac{\infty}{2} \frac{(-1)^{n-1}}{\pi^{n}} \frac{1}{2^{n}} = -1 + \frac{1}{\pi} \frac{1}{2} - \frac{1}{\pi^{2}} \frac{1}{2^{2}} + \frac{1}{\pi^{3}} \frac{1}{2^{3}} + \cdots$$

$$\frac{1}{\pi^{n}} \frac{1}{\pi^{n}} \frac{1}{\pi^{n$$

$$= \lim_{k \to \infty} \left| \frac{Z}{T} \right| = \frac{|Z|}{T}$$

The ratio test says the series will converge if $\frac{|Z|}{\pi} < 1$ and diverge if $\frac{|Z|}{\pi} > 1$.

radius of convergence is $R = \pi$

Let's now use Taylor's theorem.

Ex:
$$f(Z) = e^{Z}$$

Let's find the Taylor series for $f(Z) = e^{Z}$
at $Z_{0} = 0$.

$$f(Z) = e^{Z}$$
Taylor series is

$$f'(Z) = e^{Z}$$
Taylor series is

$$f'(Z) = e^{Z}$$
Taylor series is

$$f(Z) = e^{Z}$$
Taylor series is

$$f(Z) = e^{Z}$$
Taylor series for $f(Z) = e^{Z}$

$$f(Z) = e^{Z}$$
The radius of convergence
is $R = \infty$

Ex: Let
$$f(z) = \log(1+z)$$

where we are using the principal branch
of log.
 $4680 \operatorname{Recap}$
 $10g(w) = \ln|w| + iarg(w)$
 $-\pi < arg(w) < \pi$
(principal branch)
This branch of log
is analytic on
 $\frac{d}{dw} \log(w) = \frac{1}{w} | A = C - \{x + iy\}|_{x \le 0}^{y=0}$
 $f(z) = \log(1+z)$ is
analytic on
 $B = C - \{x + iy\}|_{y=0}^{y=0}$
What's the Taylor senier for f centered
at $z_0 = 0$ and on what disc doer it

converge to f(z)=log(1+z) B $D(0;1) = \{ z \mid |z| < 1 \}$ By Taylor's theorem the Taylor series for f centered at Zo=0 will converge to f in D(o; 1). Taylor series at $f(z) = \log(1+z)$ Zo=0 is $f'(z) = (|+z|^{-1})$ $\sum_{k=1}^{\infty} \frac{f^{(k)}(o)}{k!} z^{k}$ $f''(z) = -(1+z)^{-2}$ $f'''(z) = Z(1+z)^{-3}$ k=0 $= \int_{k=1}^{\infty} \frac{\left(\frac{(-1)^{k-1}(k-1)!}{(1+0)^{k}}\right)}{(1+0)^{k}}$ $f^{(4)}(z) = -3!((+z))$ $f^{(5)}(z) = 4!(1+2)^{-5}$ $f^{[k]}(2) = (-1)^{k-1}(k-1)!$ $= \sum_{k=1}^{\infty} \frac{(-1)^{k}(k-1)!}{k[(k-1)!]} z^{k}$ $(172)^{k}$ k7/1

$$f^{(0)}(0) = \log(1+0) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 0$$

$$Thus, \log(1+2) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \frac{1}{k}$$

$$for \quad all \quad z \in D(0;1) = \frac{z}{2} |z| < 1$$

$$for \quad all \quad z \in D(0;1) = \frac{z}{2} |z| < 1$$

$$\frac{E_{X}}{F_{0}} = \sum_{k=0}^{\infty} (-1)^{k} \frac{z \in \mathbb{C}}{(2k+1)!} \text{ we have}$$

$$= z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \frac{z^{7}}{7!} + \frac{z^{9}}{9!} - \cdots$$

$$(os(z) = \sum_{k=0}^{\infty} (-1)^{k} \frac{z^{2k}}{(2k)!}$$

$$= \left[-\frac{z^{2}}{z!} + \frac{z^{4}}{4!} - \frac{z^{6}}{6!} + \frac{z^{8}}{8!} - \cdots \right]$$

Theorem: Let
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 and
 $\sum_{n=0}^{\infty} b_n (z-z_0)^n$ be power series with the
same center z_0 and radii of convergence
 $R_1 > 0$ and $R_2 > 0$, respectively.
Let $R = \min \{R_1, R_2\}$. Let
Let $R = \min \{R_1, R_2\}$. Let
 $Let = \frac{2}{n} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$
 $c_n = \sum_{k=0}^{\infty} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$
Then, $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ has radius of
Then, $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ has radius of
 $Convergence \ge R$ and inside this circle
of convergence we have
 $\left(\sum_{n=0}^{\infty} a_n (z-z_0)^n\right) \left(\sum_{n=0}^{\infty} b_n (z-z_0)^n\right) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$
Hothman/
Marsden book
 $R_1 > 0$

$$\begin{bmatrix} a_{o}+a_{i}(z-z_{o})+a_{2}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} b_{o}+b_{i}(z-z_{o})+b_{2}(z-z_{o})^{2}+\cdots \\ b_{o}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+a_{i}b_{i}b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+a_{i}b_{i}b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+a_{i}b_{i}b_{i}(z-z_{o})+b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+a_{i}b_{i}b_{i}(z-z_{o})+b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \end{bmatrix} \begin{bmatrix} a_{o}b_{i}+a_{i}b_{i}b_{i}(z-z_{o})+b_{i}(z-z_{o})+b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}(z-z_{o})^{2}+\cdots \\ a_{i}b_{i}($$

$$\frac{E \times anple + illustrate + thm next time...}{f(z) = |-\cos(z^{5}), z_{0} = 0}$$

$$\frac{F(z) = |-\cos(z^{5}), z_{0} = 0$$

$$\frac{F(z) = |-\cos(z^{5}) = |-\cos(z^{5}) = |-\cos(z^{5}) = |-1 = 0$$

$$For \quad all \ z \in \mathbb{C} \quad we \quad have + thet$$

$$\frac{F(z) = |-\cos(z^{5}) = |-\cos(z^{5}) + \frac{(z^{5})^{2}}{2!} + \frac{(z^{5})^{2}}{4!} - \frac{(z^{5})^{6}}{6!} + \frac{(z^{5})^{8}}{8!} - \cdots = \frac{z^{10}}{2!} - \frac{z^{20}}{4!} + \frac{z^{30}}{6!} - \frac{z^{40}}{8!} + \cdots = z^{10} \left[\frac{1}{2!} - \frac{z^{10}}{4!} + \frac{z^{20}}{6!} - \frac{z^{30}}{8!} + \cdots \right]$$

 $\varphi(z)$ $\varphi(0) = \frac{1}{z!} \neq 0$

So,

$$f(z) = z^{l^{\circ}} \varphi(z)$$

where φ is also analytic at O] more
next
time
and $\varphi(0) \neq 0$.
Next time we are going to say that
 f has a zero at $z_0 = 0$ of
order 10.