$$
\begin{aligned}
& \text { Math } 5680 \\
& 3 / 22 / 23
\end{aligned}
$$

Ex: Let $f(z)=\frac{1}{z(z-1)}$
Let $A=\{z|0<|z|<1\}$
f is analytic on A.
Let's find f 's Laurent
 series on A.
Let $z \in A$.
Then $0<|z|<1$.

$$
\text { So, } \begin{aligned}
\frac{1}{z(z-1)} & =\frac{-1}{z}\left[\frac{1}{1-z}\right] \\
& =-\frac{1}{z}\left[1+z+z^{2}+z^{3}+\cdots\right] \\
& =-\frac{1}{z}-1-z-z^{2}-z^{3}-\ldots
\end{aligned}
$$

$$
\sum_{\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}+\sum_{n=0}^{\infty} a_{n} z^{n}}^{\underbrace{n}}
$$

Let $B=\{z|0<|z-1|<1\}$
Let $z \in B$
Then, $0<|z-1|<1$.
So,

$$
\begin{aligned}
\frac{1}{z(z-1)} & =\frac{1}{(z-1)} \cdot \frac{1}{z} \\
& =\frac{1}{(z-1)} \cdot \frac{1}{1+(z-1)}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
= & \frac{1}{(z-1)} \cdot \frac{1}{1-(-(z-1))} \\
\begin{array}{rl}
\mid-(z-1|<1|<1
\end{array} \left\lvert\,=\frac{1}{(z-1)} \cdot\left[1-(z-1)+(z-1)^{2}\right.\right. \\
\left.-(z-1)^{3}+(z-1)^{4}-\ldots\right]
\end{array}\right] \quad \begin{aligned}
& \frac{1}{(z-1)}-1+(z-1)-(z-1)^{2}+\ldots \\
& \\
& \sum_{n=1}^{\infty} \frac{b_{n}}{(z-1)^{n}}+\sum_{n=0}^{\infty} a_{n}(z-1)^{n}
\end{aligned}
$$

Let $C=\{z|1<|z|\}$
f is analytic on C. Let $z \in \mathbb{C}$.

Then, $1<|z|$.

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}+O_{\pi} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

Def: Let $z_{0} \in \mathbb{C}$. We say that z_{0} is an isolated singularity of f if
(1) f is not analytic at z_{0}
and (2) f is analytic in some deleted r-neighborhood

$$
\begin{aligned}
& \text { deleted } r \text { - nerve } \\
& D^{*}\left(z_{0} j r\right)=\left\{z\left|0<\left|z-z_{0}\right|<r\right\}\right.
\end{aligned}
$$

If this is the case, then

$$
f(z)=\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for $z \in D^{*}\left(z_{0} j r\right)$ where the above is the Lavrent series for f in $D^{*}\left(z_{0} ; r\right)$.
Furthermore:
(A) If all but a finite number of the b_{n}^{\prime} s are zero, then z_{0} is called a pole of f.
If k is the largest integer where $b_{k} \neq 0$, then z_{0} is called a pole of order k.
A pole of order 1 is called
a simple pole.
(B) If an infinite number of the b_{n}^{\prime} 's are non-zero, then z_{0} is called an essential singularity.
(c) We call b_{1} the residue of f at z_{0} and write $\operatorname{Res}\left(f ; z_{0}\right)=b_{1}$
(D) If all the $b_{n}^{\prime} s$ are zero we say that z_{0} is a removable singularity.

In this case,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for } z \in D^{*}\left(z_{0}, r\right)
$$

Define

$$
\tilde{f}(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for } z \in D\left(z_{0 j} ;\right)
$$

Then, $f(z)=\tilde{f}(z)$ for $z \in D^{*}\left(z_{0 ;} ;\right)$ but \tilde{f} is also defined at z_{0}, as

$$
\begin{aligned}
\tilde{f}\left(z_{0}\right) & =a_{0}+a_{1}\left(z_{0}-z_{0}\right)+a_{2}\left(z_{0}-z_{0}\right)^{2} \\
& =a_{0}
\end{aligned}
$$

\tilde{f} is analytic on $D\left(z_{0 j \sigma}\right)$ since the power series converges there.

So, \tilde{f} extends f to be an analytic function on $D\left(Z_{0 j} r\right)$.

Ex: Let

$$
\begin{aligned}
f(z) & =\frac{z}{(z-i)\left(z^{2}+1\right)} \\
& =\frac{z}{(z-i)^{2}(z+i)}
\end{aligned}
$$

f has isolated singularities $D^{*}(i ; 2)$ at i and $-i$.
Consider

$$
D^{*}(i ; 2)=\{z|0<|z-i|<2\}
$$

Let $z \in D^{*}(i ; 2)$.
Then,

$$
\begin{aligned}
f(z) & =\frac{z}{(z-i)\left(z^{2}+1\right)} \\
& =\frac{z}{(z-i)^{2}(z+i)} \\
& =\frac{i+(z-i)}{(z-i)^{2}} \cdot\left(\frac{1}{(z+i)}\right. \\
& =\frac{i+(z-i)}{(z-i)^{2}} \cdot \frac{1}{(2 i+z-i)} \\
& =\frac{i+(z-i)}{(z-i)^{2}} \cdot \frac{1}{2 i} \cdot\left(\frac{1}{1-\left(\frac{-(z-i)}{2 i}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1-\omega}=\begin{array}{c}
1+w+w^{2}+w^{3}+\cdots \\
|w|<1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =[i+(z-i)]\left[\frac{1}{2 i(z-i)^{2}}-\frac{1}{(2 i)^{2}(z-i)}\right. \\
& \frac{1}{i}=-i+\frac{1}{(2 i)^{3}}-\frac{(z-i)}{(2 i)^{4}}+ \\
& \frac{1}{2 i}=-\frac{1}{2} i \quad+\frac{(z-i)^{2}}{(2 i)^{5}}-\cdots \\
& =\frac{1 / 2}{(z-i)^{2}}+\frac{\frac{i}{4}-\frac{1}{2} i}{(z-i)}=\frac{-\frac{1}{4} i}{\left(\frac{i}{(2 i)^{3}}-\frac{1}{(2 i)^{2}}\right),\left(\frac{1}{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(-\frac{i}{(2 i)^{4}}+\frac{1}{(2 i)^{3}}\right)(z-i) \\
& +\cdots
\end{aligned}
$$

f has a pole of order 2

$$
\operatorname{Res}(f ; i)=\frac{-i}{4}=b_{1}
$$

