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f is analytic on A.
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D: LetZuEK. We say

that Zo is
an singularity

off if

Ofis not
analytic atZo

andof is analytic
in some

deleted r-neighborhood

D*(z0jr) =[z/0<1z-zok r}
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If this is

the case,
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f(z)=Ent. Earlz-zo
for z = D*(zoii) where the above

is the Laurentseries for f

in D*(zojr).

Furthermore:

⑰If all buta finitenumber

of the bus are zero,
then Zo

is called a pole of f.

IfR is the longestinteger

where bRF0, then to is

called a pole of order R.
-

Apole of order 1 is called



a smpole.

⑬ If an infinite number of

the bis are non-zero,

then Zo is called an

⑨tialsingularre
of f utzo

and

Write Res(f;z0)
=b,

④If all the bus are zero

we say that
to is a

-
able singularity.



In this case,

f(z) =Eolz-zol" for zeD*(zoj)
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Iis analytic on D(z0ji) since the

power series converges there.



So, I extends of tobe an

analytic fraction On D(ZojM.
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f has isolated singularities D*(i,2)
ati and -i.

Consider lD*(i;2) =[z/0<1z -i)23
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f has apole of order 2

Res(f;i) = =b,


