Math 5680 3/20/23

HW 3 #6) Should say "simple" in problem statement. Should say "simple, closed" in solutions I fixed this online Tests handed back on Weds

(topic 3 continued...) (Discussion of the zeros of analytic function 0 N Suppose that $f: A \rightarrow C$ where A = I is an open set and f is analytic on A. Let Z.EA Where $f(z_0) = 0$. `∂ Z₀ Since A is open $D(z_{o};\Gamma)$ there exists r70 Where $D(Z_{o};r) \leq A$ By Taylor's theorem

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

$$= \frac{f^{(1)}(z_0)}{1!} (z - z_0) + \frac{f^{(2)}(z_0)}{2!} (z - z_0)^2 + \cdots$$

$$f^{(0)}(z_0) = f_{0r} \quad all \quad z \in D(z_0; r)$$

$$= f(z_0) = 0 \quad \text{for all } z \in D(z_0; r)$$

$$\frac{(ase \mid : \text{Suppose } f^{(k)}(z_0) = 0 \quad \text{for all } k \ge 0}{k \ge 0}$$

$$Then, \quad f(z) = 0 \quad \text{for all } z \in D(z_0; r)$$

$$\frac{(ale \mid 2: \text{There exists a smallest})}{positive integer n where}$$

$$\frac{f^{(n)}(z_0) \neq 0}{k!}$$

Then for
$$Z \in D(Z_0, r)$$
 we have
 $f(Z) = \frac{f^{(n)}(Z_0)}{n!}(Z_0, Z_0)^n$ for $Z = 0$
 $+ \frac{f^{(n+1)}(Z_0)}{(n+1)!}(Z_0, Z_0, Z_0)^{n+1} + 0.00$
 $= (Z - Z_0)^n \left[\frac{f^{(n)}(Z_0)}{n!} + \frac{f^{(n+1)}(Z_0)}{(n+1)!}(Z_0, Z_0, Z_0) + 0.00\right]$
Not $Z < r_0$

.

where
$$\varphi(z) = \sum_{k=0}^{\infty} \frac{f^{(n+k)}(z_0)}{(n+k)!} (z-z_0)$$

and φ converges on $D(z_0)^r$

and
$$\varphi(z_0) = \frac{f^{(n)}(z_0)}{n!} \neq 0$$
.
 φ is analytic on $D(z_0;r)$
Since its a power series.

Summary of Case 2: $f(z) = (z - z_{o})^{n} \phi(z)$ where q is unalytic at Zo and $\varphi(z_0) \neq 0$ In this case, we say that thas a zero of order n at Zo.

$$Ex: f(z) = e^{(z-1)^{2}} - 1, z_{0} = 1$$

$$f(z_{0}) = f(1) = e^{(1-1)^{2}} - 1 = e^{0} - 1$$

$$= 1 - 1 = 0$$
For any $z \in C$ we have
$$f(z) = e^{(z-1)^{2}} - 1$$

$$f(z) = e^{(z-1)^{2}} - 1$$

$$f(z) = e^{(z-1)^{2}} - 1$$

$$f(z) = e^{(z-1)^{2}} + \frac{1}{2!}(z-1)^{2} + \frac{1}{3!}(z-1)^{4} + \frac{1}{3!}(z$$

 $= (2 - 1)^{2} \varphi(2)$ q is unalytic at Zo=[and $\varphi(z_{o}) = \varphi(1) = 1 \neq 0$ Zu= is a zero of order Z for f(Z).

 $\phi(z)$

Theorem: (Isolation of zeros
of an analytic function)
Suppose that
$$f: A \rightarrow \mathbb{C}$$
 where
 $A \subseteq \mathbb{C}$ is open and $f(z_0) = 0$
for some $z_0 \in A$. Suppose f
is analytic on A.

Then either: where D There exists r70 $D(Z_{0}) \subseteq A$ and f(Z) = 0N | Z ∈ D (Z,jr) fur : 0

is locally the zero function at Zo ÍOR such (2) there exists r70 that $D(Z_{ojr}) \subseteq A$ and $f(z) \neq 0$ for all ZED(Zojr) - 22.3 A (5(2.)) Zo

[TOPIC 4-Laurent Series]

Theorem (Laurent Expansion Theorem) Let $0 \le \Gamma_1 < \Gamma_2$ and $Z_0 \in \mathbb{C}$ Consider the annulus $A = \{ Z \mid C_1 < |Z - Z_0| < C_2 \}$ z_{\circ} $We allow <math>r_{1} = 0$ and/or $\Gamma_2 = \infty$ $\langle \rangle$

Suppose $f: A \rightarrow C$ is analytic on A.

Then we can write

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} + \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

$$= \left[\dots + \frac{b_2}{(z-z_0)^2} + \frac{b_1}{(z-z_0)} + a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + a_1 (z-z_0) + a_2 (z-z_0)^2 + a_3 (z-z_0)^2 + a_4 ($$

Both series above converge absolutely on A and uniformly in sets of the form

$$B = \frac{2}{P_1} \left\{ P_1 \leq \left[2 - 2_0 \right] \leq P_2 \right\}$$

$$P_{1,P_2}$$

where $r_1 < P_1 < P_2 < r_2$.

This series for f is called the Laurent series of f centered at Zo in the annulus A.

If V is a circle around Zo, oriented counter-clockwise, with radius r where ricr<r2 then

$$\Omega_{n} = \frac{1}{2\pi i} \int \frac{f(w)}{(w-z_{o})^{n+1}} dw$$

$$for n = 0, 1, 2, 3, ...$$

and
$$\int_{Z_{T,\bar{X}}} f(w) \cdot (W - Z_0) dw$$