Math 5680

$$
3 / 20 / 23
$$

HF 3
(\#6) Should say "simple" in problem statement. Should say "simple, closed" in solutions

I fixed this online

Tests handed back on Weds
(topic 3 continued...)
Discussion of the zeros of an analytic function
Suppose that $f: A \rightarrow \mathbb{C}$ where $A \subseteq \mathbb{C}$ is an open set and f is analytic on A.
Let $z_{0} \in A$
where $f\left(z_{0}\right)=0$.
Since A is open there exists $r>0$ where

$$
D\left(z_{0} j r\right) \subseteq A
$$

By Taylor's theorem

$$
\begin{aligned}
& f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} \\
& \quad=\frac{f^{(1)}\left(z_{0}\right)}{1!}\left(z-z_{0}\right)^{\prime}+\frac{f^{(2)}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\ldots \\
& f^{(0)}\left(z_{0}\right)=0 \text { for all } z \in D\left(z_{0}, r\right) . \\
& =f\left(z_{0}\right)=0 \quad
\end{aligned}
$$

case 1: Suppose $f^{(k)}\left(z_{0}\right)=0$ for all

$$
k \geqslant 0
$$

Then, $f(z)=0$ for all $z \in D\left(z_{0}, r\right)$
case 2: There exists a smallest positive integer n where

$$
f^{(n)}\left(z_{0}\right) \neq 0
$$

Then for $z \in D\left(z_{0 j}, r\right)$ we have

$$
\begin{aligned}
& f(z)=\frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \quad \begin{array}{l}
\text { first } \\
\text { nonzero } \\
\text { term }
\end{array} \\
& +\frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}\left(z-z_{0}\right)^{n+1}+\cdots \\
& =\left(z-z_{0}\right)^{n}[\underbrace{\frac{f^{(n)}\left(z_{0}\right)}{n!}}_{n 0 t z e r o}+\frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}\left(z-z_{0}\right)+\cdots] \\
& =\left(z-z_{0}\right)^{n} \varphi(z) \\
& \text { Where } \phi(z)=\sum_{k=0}^{\infty} \frac{f^{(n+k)}\left(z_{0}\right)}{(n+k)!}\left(z-z_{0}\right)^{k}
\end{aligned}
$$ and φ converges on $D\left(Z_{0 j} ;\right)$

and $\varphi\left(z_{0}\right)=\frac{f^{(n)}\left(z_{0}\right)}{n!} \neq 0$.
φ is analytic on $D\left(z_{0, j}\right)$
since its a power series.
Summary of case 2 :

$$
f(z)=\left(z-z_{0}\right)^{n} \varphi(z)
$$

where φ is analytic at z_{0} and $\varphi\left(z_{0}\right) \neq 0$
In this case, we say that f has a zero of order n at z_{0}.

$$
\begin{aligned}
E x: & f(z)=e^{(z-1)^{2}}-1, z_{0}=1 \\
f\left(z_{0}\right)=f(1)=e^{(1-1)^{2}}-1 & =e^{0}-1 \\
& =1-1=0
\end{aligned}
$$

For any $z \in \mathbb{C}$ we have

$$
\left.\begin{array}{rl}
f(z) & =e^{(z-1)^{2}}-1 \\
& =-1+\sum_{n=0}^{\infty} \frac{1}{n!}(z-1)^{2 n}=\sum_{n=0}^{\infty} \frac{1}{n!} w^{n} \\
\forall w \in \mathbb{C}
\end{array}\right]
$$

$$
=(z-1)^{2} \varphi(z)
$$

φ is analytic at $z_{0}=1$ and $\varphi\left(z_{0}\right)=\varphi(1)=1 \neq 0$
$z_{0}=1$ is a zero of order 2 for $f(z)$.

Theorem: (Isolation of zeros of an analytic function)
Suppose that $f: A \rightarrow \mathbb{C}$ whee $A \subseteq \mathbb{C}$ is open and $f\left(z_{0}\right)=0$ for some $z_{0} \in A$. Suppose f is analytic on A.

Then either:
(1) There exists $r>0$ where $D\left(z_{0 j} r\right) \subseteq A$ and $f(z)=0$ for all $z \in D\left(z_{0 j} r\right)$

[f is locally the zero function at z_{0}]
OR
(2) there exists $r>0$ such that $D\left(z_{0 j r}\right) \subseteq A$ and $f(z) \neq 0$ for all

$$
z \in D\left(z_{0 j}\right)-\left\{z_{0}\right\}
$$

$$
\Downarrow_{\left(z \neq z_{0}\right)}
$$

proof: Hw 3 \#7

TOPIC 4-Laurent Series
Theorem (Laurent Expansion Theorem) Let $O \leq r_{1}<r_{2}$ and $z_{0} \in \mathbb{C}$ Consider the annulus

$$
A=\left\{z\left|r_{1}<\left|z-z_{0}\right|<r_{2}\right\}\right.
$$

We allow $r_{1}=0$ and/or $r_{2}=\infty$

Suppose $f: A \rightarrow \mathbb{C}$ is analytic on A.

Then we can write

$$
\begin{aligned}
& f(z)=\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
&=\left[\cdots+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\frac{b_{1}}{\left(z-z_{0}\right)}+a_{0}\right.+a_{1}\left(z-z_{0}\right) \\
&+a_{2}\left(z-z_{0}\right)^{2} \\
&+\cdots]
\end{aligned}
$$

for $z \in A$.
Both series above converge absolutely on A and uniformly in sets of the form

$$
B_{p_{1}, p_{2}}=\left\{z\left|p_{1} \leqslant\left|z-z_{0}\right| \leqslant p_{2}\right\}\right.
$$

Where $r_{1}<p_{1}<p_{2}<r_{2}$.

This series for f is called the Laurent series of f centered at z_{0} in the
 annulus A.

If γ is a circle around z_{0}, oriented counth-clockwise, with radius r where $r_{1}<r<r_{2}$ then

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} d w
$$

for $n=0,1,2,3, \ldots$
and

$$
b_{n}=\frac{1}{2 \pi i} \int_{\gamma} f(w) \cdot\left(w-z_{0}\right)^{n-1} d w
$$

for $n=1,2,3, \ldots$
The Laurent series for f is unique. That is, any pointwise convergent expansion of f of this form in A equals the Laurent expansion.
Proof: Hoffman/Marsden book

