$$
\begin{aligned}
& \text { Math 5680 } \\
& 3 / 1 / 23
\end{aligned}
$$

Theorem (Taylor's Theorem)
Let f be analytic on an open set $A \subseteq \mathbb{C}$.
Let $z_{0} \in A$.
Let

$$
\begin{aligned}
& \text { Let } \\
& \begin{aligned}
B_{r} & =\left\{z| | z-z_{0} \mid<r\right\} \\
& =D\left(z_{0} j r\right)
\end{aligned}
\end{aligned}
$$

Suppose $B_{r} \subseteq A$.
Then the series

$$
\left.\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}\right]^{n} \begin{aligned}
& \frac{\text { Taylor }}{\text { series }} \\
& \text { for } f \\
& \text { centered } \\
& \text { at }
\end{aligned}
$$

converges to $f(z)$ for all $z \in B_{r}$

Proof: We first prove the theorem when $Z_{0}=0$.
Let $B_{r}=\{z| | z \mid<r\} \subseteq A \quad A$ Let $z \in B_{r}$.
Let C_{0} denote some circle of radius r_{0}, centered at $z_{0}=0$, oriented counter-clockwise that is contained
 inside the disc B_{r} bot is large enough so that z is interior to C_{0}. Since f is analytic inside and on C_{0} and z is interior to C_{0} we have

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{\rho-z} d \rho
$$

Recall that when $w \neq 1$ then

$$
\begin{aligned}
& \text { Recall that when } \sum_{n=0}^{N-1} \omega^{n}=1+\omega+\omega^{2}+\cdots+w^{N-1}=\frac{1-w^{N}}{1-w} \\
& \text { Thus, if } w \neq 1 \text {, then } \\
& =\frac{1}{1-w}-\frac{w^{\prime}}{1-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, if } w \neq 1 \text {, then } \\
& \frac{1}{1-w}=\sum_{n=0}^{N-1} w^{n}+\frac{w^{N}}{1-w}
\end{aligned}
$$

for $N \geqslant 1$.
Hence,

$$
\begin{aligned}
& \frac{1}{\rho-z}=\left(\frac{1}{\rho}\right)\left(\frac{1}{1-\left(\frac{z}{\rho}\right)}\right)<\begin{array}{l}
\text { the integral } \\
\text { because } \rho \text { is } \\
\text { on } C_{0} \text { and } \\
z \text { is inside } C_{0}
\end{array} \\
& =\left(\frac{1}{\rho}\right)\left(\left(\sum_{n=0}^{N-1}\left(\frac{z}{s}\right)^{n}\right)+\frac{\left(\frac{z}{s}\right)^{N}}{1-\frac{z}{s}}\right) \\
& =\left(\sum_{n=0}^{N-1}\left(\frac{1}{\rho^{n+1}}\right) z^{n}\right)+z^{N} \frac{1}{(\rho-z) \rho^{N}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{\rho-z} d \rho \\
& =\frac{1}{2 \pi i} \sum_{n=0}^{N-1}\left(\int_{C_{0}} \frac{f(\rho)}{\rho^{n+1}} d \rho\right) z^{n} \\
& +\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{(\rho-z) \rho^{N}} d \rho
\end{aligned}
$$

By Cauchy's integral theorem, since f is analytic in and un C_{0} and O is interior to C_{0} we have that

$$
\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{\rho^{n+1}} d \rho=\frac{f^{(n)}(0)}{n!} \sqrt{C_{0}}
$$

Thus,

$$
\text { Thus) } f(z)=\sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^{n}+P_{N}(z)
$$

Where

$$
\rho_{N}(z)=\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{(\rho-z) \rho^{n}} d \rho
$$

We will show that $\rho_{N}(z) \rightarrow 0$ as $N \rightarrow \infty$.
This will imply that

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

which will complete the proof of the $z_{0}=0$ case.

Let's show $P_{N}(z) \rightarrow 0$ as $N \rightarrow \infty$. Br_{r} Let $r_{z}=|z|$.

If ρ is on
Co, then
4680

By the max-modulus theorem from 4680 or from topology (since f is continuous on the compact Set C_{0})
there exists $M>0$ where

$$
|f(\rho)| \leq M
$$

for all ρ on C_{0}.
Thus,

$$
\begin{aligned}
& \text { hus, } \\
& \left|\rho_{N}(z)\right|=\left|\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(\rho)}{(\rho-z) \rho^{N}} d \rho\right| \\
& \left.\left||\hat{\mid}|=1=\frac{|z|^{N}}{2 \pi}\right| \int_{C_{0}} \frac{f(\rho \mid}{(\rho-z) \rho^{N}} d \rho \right\rvert\, \\
& \begin{array}{l}
|z|=r^{z} \\
\mid f(\rho| | \leq M \\
\frac{1}{|\rho-z|} \leqslant \frac{1}{r_{0}-r_{z}} \\
\left|\rho^{N}\right|=r_{0}^{N}
\end{array}=(\frac{r_{z}^{N}}{2 \pi} \cdot \frac{M}{\left(r_{0}-r_{z}\right) r_{0}^{N}} \cdot \underbrace{2 \pi r_{0}}_{\text {arclength }} \\
& \left.r_{0}-r_{z}\right)\left(\frac{r_{z}}{r_{0}}\right)^{N} \rightarrow 0
\end{aligned}
$$

$\left.\left|\frac{f(\rho \mid}{(\rho-z))^{N}}\right| \leqslant \frac{M}{\left(r_{0}-r_{z}\right) r_{0}^{N}} \right\rvert\,$ as $N \rightarrow \infty$
because $0<\frac{r_{z}}{r_{0}}<1$.
Thus, $P_{N}(z) \rightarrow 0$ as $N \rightarrow \infty$
So, $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}$.
This concludes $z_{0}=0$ case.
Now we prove the general case.
Let z_{0} be arbitrary. Suppose f is analytic on

$$
B_{r}=\left\{z| | z-z_{0} \mid<r\right\}
$$

Let $g(z)=f\left(z+z_{0}\right)$
Then g is analytic on

$$
D_{r}=\{z| | z \mid<r\}
$$

Thus by the previous case we know that

$$
\begin{aligned}
& \text { we know that } \\
& g(z)=\sum_{n=0}^{\infty} \frac{g^{n n}(0)}{n!} z^{n} \text { for all } z \in D_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& f\left(z+z_{0}\right)=g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n} \\
& g(z)=f\left(z+z_{0}\right) \quad=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!} z^{n} \quad \forall z \in D_{r}
\end{aligned}
$$

$g^{(n)}(z)=f^{(n)}\left(z+z_{0}\right) \quad P l u g z-z_{0}$ in for $g^{(n)}(0)=f^{(n)}\left(z_{0}\right) \quad z$ to get that

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \quad \forall z \in B_{r}
$$

