Math 5680 z/8/23

[Super duper
$$\Lambda$$
-inequality]
Theorem: If $\sum_{k=1}^{\infty} a_k$ converges
absolutely, then
 $\int_{\infty}^{\infty} a_k \leq \int_{\infty}^{\infty} |a_k|$

$$\lim_{n \to \infty} S_n = \sum_{k=1}^{\infty} |a_k|$$
 both exist.

We know

$$|S_n| = |\sum_{k=1}^n a_k| \leq \sum_{k=1}^n |a_k| = S_n$$

That is,
$$\hat{\sum}_{n \neq \infty} | \leq \lim_{k \neq 1} \sum_{n \neq \infty} | a_k|$$

From Math 4680,

$$\lim_{n \to \infty} \left| \sum_{k=1}^{n} \alpha_{k} \right| = \lim_{p \to \infty} \sum_{k=1}^{n} \alpha_{k} |$$

$$\lim_{n \to \infty} \left| \sum_{k=1}^{n} \alpha_{k} \right| = \lim_{n \to \infty} \sum_{k=1}^{n} |\alpha_{k}|$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \alpha_{k} | \leq \lim_{n \to \infty} \sum_{k=1}^{n} |\alpha_{k}|$$

$$\lim_{k \to \infty} \sum_{k=1}^{n} |\alpha_{k}| \leq \lim_{n \to \infty} \sum_{k=1}^{n} |\alpha_{k}|$$

$$\lim_{k \to \infty} \sum_{k=1}^{n} |\alpha_{k}| \leq \sum_{k=1}^{n} |\alpha_{k}|$$

Theorem (Weierstrass M-Test)

Let
$$A \subseteq \mathbb{C}$$
.
Let $g_k: A \rightarrow \mathbb{C}$ for $k \ge 1$.
Suppose there are real constants
 $M_k = 70$ for $k \ge 1$, where
 $\widehat{(k)} |g_k(z)| \le M_k$ for all $z \in A$
and $\widehat{(k)} = M_k$ converges.
 $K=1$
Then, $\sum_{k=1}^{\infty} g_k(z)$ converges
 $absolutely$ and uniformly on A .

Proof: Let $S_n(z) = \sum_{k=1}^n |g_k(z)|$ and $t_n = \sum_{k=1}^n M_k$. By (ii) We Know lim tn = Mk Neierstrass Weierstrass Let's first show $\sum_{k=1}^{\infty} g_k(z)$ conjerges absolutely for all ZEA. To do this let's show Sn(Z) is a Cauchy sequence for all ZEA. This will imply $\infty = \sum_{k=1}^{\infty} |g_k(z)| = \exp(z)$ YZEA.

Let 270. Since, by (ii), lim t_n = Z Mk n7pp k=1 converges, so (tn) is a Cauchy sequence. Thus, there exists N>D where if n>m>N then |t_-t_m|<2 So, if n>m>,N, then $\sum_{k=m+1}^{n} M_{k} = \sum_{k=1}^{n} M_{k} - \sum_{k=1}^{m} M_{k}$ $= \left| \begin{array}{c} \hat{\Sigma} M_{k} - \tilde{\Sigma} M_{k} \right| \\ k = r \\ k = r \end{array} \right|$ $=|t_n-t_m|<2$

Hence, if
$$n > m \ge N$$
 and $z \in A$, then
 $|\hat{S}_n(z) - \hat{S}_m(z)| = |\sum_{k=1}^{n} |g_k(z)| - \sum_{k=1}^{n} |g_k(z)||^2$
 $= \sum_{k=m+1}^{n} |g_k(z)| \le \sum_{k=m+1}^{n} M_k < S$
Thus, $(\hat{S}_n(z))$ is a Cauchy sequence
for all $z \in A$ and hence
has a limit for all $z \in A$.
So, $\sum_{n=1}^{\infty} g_k(z)$ converges absolutely
 $\forall z \in A$.

Now it's time for UNIFORM CONVERGENCE!!!

For each ZEA, let

$$S_n(Z) = \sum_{k=1}^{n} g_k(Z)$$
.
We know that $\lim_{n \to \infty} S_n(Z)$ exists
for each ZEA from the above.
Let $S(Z) = \lim_{n \to \infty} S_n(Z) = \sum_{k=1}^{\infty} g_k(Z)$.

If
$$z \in A$$
, then
 $|s(z) - s_n(z)| = |\sum_{k=1}^{\infty} g_k(z) - \sum_{k=1}^{n} g_k(z)|$
 $= |\sum_{k=1}^{\infty} g_k(z)|$

Check out
$$\frac{z}{4} = \frac{z}{k} = n+1$$

Hw 1
Hz solution $\leq \sum_{k=n+1}^{\infty} |g_k(z)|$

Super-duper
$$\leq \sum_{k=n+1}^{\infty} M_{k}$$

Let $\geq >0$.
Since $\sum_{k=1}^{\infty} M_{k}$ converges, there
exists N>0 where if $n \geq N$
then $|\sum_{k=1}^{\infty} M_{n} - \sum_{k=1}^{\infty} M_{n}| < \Sigma$
limit Partial SVM

So if
$$n \ge N$$
, then

$$\sum_{k=n+1}^{\infty} M_{k} = \sum_{k=1}^{\infty} M_{k} - \sum_{k=1}^{\infty} M_{k}$$

$$= \left| \sum_{k=1}^{\infty} M_{k} - \sum_{k=1}^{\infty} M_{k} \right| < \Sigma$$

Therefore, hence, ergo, we have that
if
$$z \in A$$
 and $n \neq N$ then
 $|S(z) - S_n(z)| \leq \sum_{k=n+1}^{\infty} M_k < \Sigma$

Consequently,
$$S_n \rightarrow S$$
 uniformly
on A.
That is, $\sum_{k=1}^{\infty} g_k(z)$ converges
 V_{ni} formly on A.