Math 5680

$$
2 / 8 / 23
$$

[Super duper Λ-inequality]
Theorem: If $\sum_{k=1}^{\infty} a_{k}$ converges
absolutely, then

$$
\left|\sum_{k=1}^{\infty} a_{k}\right| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|
$$

Proof:
$\frac{\text { Let } s_{n}}{}=\sum_{k=1}^{n} a_{k}$ and
$\hat{S}_{n}=\sum_{k=1}^{n}\left|a_{k}\right|$. Since $\sum_{k=1}^{\infty} a_{k}$
converges absolutely, we know both $\lim _{n \rightarrow \infty} S_{n}=\sum_{k=1}^{\infty} a_{k}$ and
$\lim _{n \rightarrow \infty} \hat{S}_{n}=\sum_{k=1}^{\infty}\left|a_{k}\right|$ both exist.
We know

$$
\left|s_{n}\right|=\left|\sum_{k=1}^{n} a_{k}\right| \leq \sum_{k=1}^{n}\left|a_{k}\right|=\hat{s}_{n}
$$

By 4650, we have

$$
\lim _{n \rightarrow \infty}\left|S_{n}\right| \leq \lim \hat{S}_{n}
$$

That is,

From Math 4680,

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} a_{k}\right|=\left|\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}\right|
$$

4 you can push a limit 6 inside a c
8 here $f(z)=|z|$
is our continuous function
So, $\left|\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right|$
Hence

$$
\left|\sum_{k=1}^{\infty} a_{k}\right| \leqslant \sum_{k=1}^{\infty}\left|a_{k}\right|
$$

Theorem (Weierstrass M-Test)
Let $A \subseteq \mathbb{C}$.
Let $g_{k}: A \rightarrow \mathbb{C}$ for $k \geqslant 1$.
Suppose there are real constants $M_{k} \geqslant 0$ for $k \geqslant 1$, where
(i) $\left|g_{k}(z)\right| \leq M_{k}$ for all $z \in A$
and (ii) $\sum_{k=1}^{\infty} M_{k}$ converges.
Then, $\sum_{k=1}^{\infty} g_{k}(z)$ converges absolutely and uniformly on A.
proof:
Let $\hat{s}_{n}(z)=\sum_{k=1}^{n}\left|g_{k}(z)\right|$
and $t_{n}=\sum_{k=1}^{n} M_{k}$.
By (ii) we know $\lim _{n \rightarrow \infty} t_{n}=\sum_{k=1}^{\infty} M_{k}$ exists.
Weierstrass
Let's first show $\sum_{k=1}^{\infty} g_{k}(z)$ converges absolutely for all $z \in A$.
To do this let's show $\hat{S}_{n}(z)$ is a Cauchy sequence for all $z \in A$.
This will imply

$$
\lim _{n \rightarrow \infty} \hat{S}_{n}(z)=\sum_{k=1}^{\infty}\left|g_{k}(z)\right| \quad \begin{aligned}
& \text { exists } \\
& \forall z \in A .
\end{aligned}
$$

Let $\varepsilon>0$.
Since, by (ii), $\lim _{n \rightarrow \infty} t_{n}=\sum_{k=1}^{\infty} M_{k}$ converges, so $\left(t_{n}\right)$ is a
Cauchy sequence.
Thus, there exists $N>0$ where
if $n>m \geqslant N$ then $\left|t_{n}-t_{m}\right|<\varepsilon$
So, if $n>m \geqslant N$, then

$$
\begin{aligned}
\sum_{k=m+1}^{n} M_{k} & =\sum_{k=1}^{n} M_{k}-\sum_{k=1}^{m} M_{k} \\
& =\left|\sum_{k=1}^{n} M_{k}-\sum_{k=1}^{m} M_{k}\right| \\
& =\left|t_{n}-t_{m}\right|<\varepsilon
\end{aligned}
$$

Hence, if $n>m \geqslant N$ and $z \in A$, then

$$
\begin{gathered}
\left|\hat{S}_{n}(z)-\hat{S}_{m}(z)\right|=\left|\sum_{k=1}^{n}\right| g_{k}(z)\left|-\sum_{k=1}^{n}\right| g_{k}(z)| | \\
=\sum_{k=m+1}^{n}\left|g_{k}(z)\right| \stackrel{i}{\leqslant} \sum_{k=m+1}^{n} M_{k}<\varepsilon
\end{gathered}
$$

Thus, $\left(\hat{S}_{n}(z)\right)$ is a Cauchy sequence for all $z \in A$ and hence has a limit for all $z \in A$.
So, $\sum_{n=1}^{\infty} g_{k}(z)$ converges absolutely $\underset{\forall z \in A}{ }$ $\forall z \in A$.

Now it's time for UNIFORM CONVERGENCE! !!

For each $z \in A$, let

$$
S_{n}(z)=\sum_{k=1}^{n} g_{k}(z)
$$

We know that $\lim _{n \rightarrow \infty} S_{n}(z)$ exists for each $z \in A$ from the above.
Let $s(z)=\lim _{n \rightarrow \infty} s_{n}(z)=\sum_{k=1}^{\infty} g_{k}(z)$.
If $z \in A$, then

$$
\begin{aligned}
&\left|s(z)-s_{n}(z)\right|=\left|\sum_{k=1}^{\infty} g_{k}(z)-\sum_{k=1}^{n} g_{k}(z)\right| \\
&=\left|\sum_{k=n+1}^{\infty} g_{k}(z)\right| \\
& \text { Check out } \\
& \text { How } 1 \\
& H 2 \text { solution } \leq \sum_{k=n+1}^{\infty}\left|g_{k}(z)\right|
\end{aligned}
$$

Let $\varepsilon>0$.
Since $\sum_{k=1}^{\infty} M_{k}$ converges, there exists $N>0$ where if $n \geqslant N$ then $\mid \underbrace{\sum_{k=1}^{\infty} M_{n}}_{\text {limit }}-\underbrace{\sum_{k=1}^{n} M_{n} \mid<\mathcal{E}, ~}$

So if $n \geqslant N$, then

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} M_{k} & =\sum_{k=1}^{\infty} M_{k}-\sum_{k=1}^{n} M_{k} \\
& =\left|\sum_{k=1}^{\infty} M_{k}-\sum_{k=1}^{n} M_{k}\right|<\varepsilon
\end{aligned}
$$

Therefore, hence, ergo, we have that if $z \in A$ and $n \geqslant N$ then

$$
\left|s(z)-s_{n}(z)\right| \leqslant \sum_{k=n+1}^{\infty} M_{k}<\varepsilon
$$

Consequently, $S_{n} \rightarrow S$ uniformly on A.
That is, $\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly un A.

Weierstrass \rightarrow ii

