Math 5680 2/6/23

Theorem: Let
$$A \subseteq \mathbb{C}$$
 be an
open set.
() Suppose $f_n: A \rightarrow \mathbb{C}$ for $n \ge 1$
and $f: A \rightarrow \mathbb{C}$.
Suppose f_n is continuous on A for all $n \ge 1$.
If f_n converges uniformly to f on A ,
then f is continuous on A .
(2) Consequently, if functions $g_k(\mathbb{Z})$
are continuous on A and
 $g(\mathbb{Z}) = \sum_{k=1}^{\infty} g_k(\mathbb{Z})$ converges uniformly
on A , then $g(\mathbb{Z})$ is continuous on A .

 $\begin{array}{c} \underline{Proof:}\\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \\ We will show that f is continuous at z_{o}. \end{array}$

Let 270. Since $f_n \rightarrow f$ uniformly on A, there exists N>D where $\left|f_{N}(z) - f(z)\right| < \frac{\varepsilon}{3}$ for all $Z \in A$. So, f_N approximates f on Awith error at most E/3 $= f_N(Z_0)$ Since f_N is continuous at Zo there exists \$70 where if $|Z-Z_0| < \delta$ then $|f_N(Z)-f_N(Z_0)| < \frac{2}{3}$ (Zzo ID(Zojs) ; A (S center radius; (S center radius; Since A is open shrink S So D(Z;S)≤A

So, if
$$|z - z_0| < \delta$$
, then
 $z \in A$ and
 $|f(z) - f(z_0)| =$
 $= |f(z) - f_N(z) + f_N(z) - f_N(z_0) + f_N(z_0) - f(z_0)|$

$$= \frac{f_{N}(z)}{f_{N}(z)} + \frac$$

$$< \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = 2$$

So, f is continuous at Zo.

(2) We are given that $g_k(z)$ are each continuous on A. Then, $S_{n}(z) = \sum_{k=1}^{n} g_{k}(z)$ are continuous on A for each n>1. Our sequence of functions on A is The $S_{1}(Z) = g_{1}(Z)$ $S_{2}(Z) = g_{1}(Z) + g_{2}(Z)$ are the fr from $S_3(z) = g_1(z) + g_2(z) + g_3(z)$ Q 9 9 assuming that We are also Sn -> 9 Uniformly on A

where
$$g(z) = \sum_{k=1}^{\infty} g_k(z)$$
.
By $\bigcirc g$ is continuous on \bigwedge .
Theorem (Cauchy criterion)
Let $\bigwedge \subseteq \square$.
 $\bigcirc \square Let f_n : \bigwedge \rightarrow \square$ for $n \ge 1$.
 $\bigcirc \square Let f_n : \bigwedge \rightarrow \square$ for $n \ge 1$.
 $\bigcirc \square Let f_n : \bigwedge \rightarrow \square$ for $n \ge 1$.
 $\square Let f_n : \bigwedge \rightarrow \square$ for $n \ge 1$.
 $\square Let f_n : \bigwedge \rightarrow \square$ for $n \ge 1$.
 $\square Let f_n : \bigwedge \rightarrow \square$ there is
an N>0 where $\square f n \ge N$ then
 $\square If_n(z) - f_{n+p}(z) - \le 2$
 $\oiint Il z \in \bigwedge$ and $p \ge 1$.
 $\square It is taking the place of m
 $\square It is taking the place of m$$

2) Let
$$g_{k}: A \to \mathbb{C}$$
 for $k \ge 1$.
Then the series $\sum_{k=1}^{\infty} g_{k}(z)$ converges
Uniformly on A iff for every $\ge >0$
there is an N>0 where if
 $N \ge N$ then
 $\left|\sum_{k=n+1}^{n+p} g_{k}(z)\right| < \sum_{k=1}^{n+p} for all z \in A$
and $p \ge 1$
 $\left|\sum_{k=1}^{n+p} g_{k}(z) - \sum_{k=1}^{n} g_{k}(z)\right|$

Then there exists
$$f: A \rightarrow C$$

that (f_n) converges uniformly to.
Let $z > 0$.
Then there exists $N > 0$ where
if $n \ge N$ then
 $|f_n(z) - f(z)| < \frac{\varepsilon}{2}$
for all $z \in A$.
Thus, if $n \ge N$ and $p \ge 1$ and $z \in A$
then
 $|f_n(z) - f_{n+p}(z)|$
 $= |f_n(z) - f(z) + f(z) - f_{n+p}(z)|$
 $\stackrel{\leq}{=} |f_n(z) - f(z)| + |f(z) - f_{n+p}(z)|$

 $\frac{1}{12} \frac{1}{12} \frac$ Ξ 2. (A) We are assuming "for every E70, there is an N>O where if $n \ge N$ then $|f_n(z) - f_{n+p}(z)| < \varepsilon$ for all zeA and p>1" This implies that for each ZEA the sequence $(f_n(Z))$ is a Cauchy sequence. Thus for each ZEA we may define $f(z) = \lim_{n \to \infty} f_n(z)$. That is far f pointwise on A. Let's show fr > f uniformly on A.

Let
$$\Sigma > 0$$
.
By our assumption there is an N>0
where if $n \ge N$ then
 $|f_n(z) - f_{n+p}(z)| < \frac{2}{2}$.
for all $z \in A$ and $p \ge 1$.
For each $z \in A$ pick P_z large
enough so that
 $|f_n(z) - f(z)| < \frac{2}{2}$ using
 f_{n+Pz}
for all $n \ge 1$.
Thus if $n \ge N$ and $z \in A$, then
 $|f_n(z) - f(z)|$

 $= \left| f_{n}(z) - f_{n+p_{z}}(z) + f_{n+p_{z}}(z) - f(z) \right|$ $\leq |f_{n}(z) - f_{n+p_{z}}(z)| + |f_{n+p_{z}}(z) - f(z)|$ < 2/2 + 2/2 = % Thus, fn > f Uniformly on A. (2) Apply part 1 to $S_n(Z) = \sum_{k=1}^n g_k(Z).$ Then you'll get that $\sum_{k=1}^{\infty} g_k(2)$ converger

;ffUniformly on A for every E70 there is an N70 where if N7N then $|S_n(z) - S_{n+p}(z)| < \mathcal{E}$ $\begin{vmatrix} n \\ S \\ g_k(z) - \sum_{k=1}^{n+p} g_k(z) \end{vmatrix} = \begin{vmatrix} n+p \\ \sum_{k=n+l}^{n+p} g_k(z) \\ k=n+l \end{vmatrix}$

for all ZEA, p7, 1,

