Math 5680 2/6/23

Theorem: Let $A \subseteq \mathbb{C}$ be an open set.
(1) Suppose $f_{n}: A \rightarrow \mathbb{C}$ fur $n \geqslant 1$ and $f: A \rightarrow \mathbb{C}$.
Suppose f_{n} is continuous on A for all $n \geqslant 1$. If f_{n} converges uniformly to f on A, then f is continuous. on A.
(2) Consequently, if functions $g_{k}(z)$ are continuous on A and $g(z)=\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on A, then $g(z)$ is continuous on A.

Proof:
(1) Let $z_{0} \in A$.

We will show that f is continuous at Z_{0}.

Let $\varepsilon>0$.
Since $f_{n} \longrightarrow f$ uniformly on A, there exists $N>0$ where

$$
\left|f_{N}(z)-f(z)\right|<\varepsilon / 3
$$

for all $z \in A$.
$\left[\begin{array}{l}\text { So, } f_{N} \text { a pproximates } f \text { on } A \\ \text { with error at most } \varepsilon / 3\end{array}\right]\left[\begin{array}{l}\operatorname{det} \text { cont. } \\ \lim _{z \rightarrow z_{0}}(z) \\ =f_{N}\left(z_{0}\right)\end{array}\right.$
Since f_{N} is continuous at $z_{0}{ }_{\&}$ there exists $\delta>0$ where if $\left|z-z_{0}\right|<\delta$ then $\left|f_{N}(z)-f_{N}\left(z_{0}\right)\right|<\frac{\varepsilon}{3}$
Since A is
open shrink $\delta i, \bar{z} z_{0} \operatorname{ID}\left(z_{0} j \delta\right)$ i A So $D\left(Z_{0}, \delta\right) \subseteq A$!

So, if $\left|z-z_{0}\right|<\delta$, then $z \in A$ and

$$
\begin{aligned}
& \left|f(z)-f\left(z_{0}\right)\right|= \\
& \begin{aligned}
=\mid f(z)-f_{N}(z) & +f_{N}(z)-f_{N}\left(z_{0}\right) \\
& +f_{N}\left(z_{0}\right)-f\left(z_{0}\right) \mid \\
\leq\left|f(z)-f_{N}(z)\right| & +\left|f_{N}(z)-f_{N}\left(z_{0}\right)\right| \\
& +\left|f_{N}\left(z_{0}\right)-f\left(z_{0}\right)\right| \\
<\varepsilon / 3 & +\varepsilon / 3
\end{aligned}+\varepsilon / 3=\varepsilon
\end{aligned}
$$

So, f is continuous at Z_{0}.
(2) We are given that $g_{k}(z)$ are each continuous on A.

Then,

$$
s_{n}(z)=\sum_{k=1}^{n} g_{k}(z)
$$

are continuous on A for each $n \geqslant 1$.
our sequence of functions on A is

$$
\begin{aligned}
& s_{1}(z)=g_{1}(z) \\
& s_{2}(z)=g_{1}(z)+g_{2}(z) \\
& s_{3}(z)=g_{1}(z)+g_{2}(z)+g_{3}(z)
\end{aligned}
$$

We are also assuming that $S_{n} \longrightarrow g$ uniformly on A
where $g(z)=\sum_{k=1}^{\infty} g_{k}(z)$.
By (1) g is continuous on A,

Theorem (Cauchy criterion) Let $A \subseteq \mathbb{C}$.
(1) Let $f_{n}: A \rightarrow \mathbb{C}$ for $n \geqslant 1$.

Then, f_{n} converges uniformly on A If for every $\varepsilon>0$ there is an $N>0$ where if $n \geqslant N$ then

$$
\left|f_{n}(z)-f_{n+p}(z)\right|<\varepsilon
$$

for all $z \in A$ and $p \geqslant 1$.
$[n+p$ is taking the place of m] in the usual cauchy def
(2) Let $g_{k}: A \rightarrow \underset{\infty}{\mathbb{C}}$ for $k \geqslant 1$.

Then the series $\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on A iff for every $\varepsilon>0$ there is an $N>0$ where if $n \geqslant N$ then

$$
\left|\sum_{k=n+1}^{n+p} g_{k}(z)\right|<\varepsilon
$$

for all $z \in A$ and $p \geqslant 1$

$$
\frac{\left|\sum_{k=1}^{n+p} g_{k}(z)-\sum_{k=1}^{n} g_{k}(z)\right|}{\left|s_{n+p}(z)-s_{n}(z)\right|}
$$

proof:
(1) (Δ) Suppose $\left(f_{n}\right)$ converges uniformly on A.

Then there exists $f: A \rightarrow \mathbb{C}$
that $\left(f_{n}\right)$ converges uniformly to.
Let $\varepsilon>0$.
[Then there exists $N>0$ where if $n \geqslant N$ then

$$
\left|f_{n}(z)-f(z)\right|<\varepsilon / 2
$$

for all $z \in A$.
Thus, if $n \geqslant N$ and $p \geqslant 1$ and $z \in A$ then

$$
\begin{aligned}
& \left|f_{n}(z)-f_{n+p}(z)\right| \\
& \quad=\left|f_{n}(z)-f(z)+f(z)-f_{n+p}(z)\right| \\
& \quad \Delta\left|f_{n}(z)-f(z)\right|+\left|f(z)-f_{n+p}(z)\right|
\end{aligned}
$$

$$
\begin{aligned}
& <\varepsilon / 2+\varepsilon / 2 \\
& =\varepsilon .
\end{aligned}
$$

(\forall) We are assuming "for every $\varepsilon>0$, there is an $N>0$ where if $n \geqslant N$ then $\left|f_{n}(z)-f_{n+p}(z)\right|<\varepsilon$ for all $z \in A$ and $p \geqslant 1$ "
This implies that for each $z \in A$ the sequence $\left(f_{n}(z)\right)$ is a Cauchy sequence.
Thus for each $z \in A$ we may define $f(z)=\lim _{n \rightarrow \infty} f_{n}(z)$.
That is $f_{n} \rightarrow f$ pointwise on A.
Let's show $f_{n} \rightarrow f$ uniformly un A.

Let $\varepsilon>0$.
By our assumption there is an $N>0$ where if $n \geqslant N$ then

$$
\left|f_{n}(z)-f_{n+p}(z)\right|<\varepsilon / 2
$$

for all $z \in A$ and $p \geqslant 1$.
For each $z \in A$ pick p_{z} large] enough so that

$$
\begin{aligned}
& \text { nough so that } \\
& \left|f_{n+p_{z}}(z)-f(z)\right|<\varepsilon / 2
\end{aligned}
$$

for all $n \geqslant 1$.
Thus if $n \geqslant N$ and $z \in A$, then

$$
\left|f_{n}(z)-f(z)\right|
$$

$$
\begin{aligned}
& =\left|f_{n}(z)-f_{n+p_{z}}(z)+f_{n+p_{z}}(z)-f(z)\right| \\
& \Delta \\
& \leq\left|f_{n}(z)-f_{n+p_{z}}(z)\right|+\left|f_{n+p_{z}}(z)-f(z)\right| \\
& <\varepsilon / 2+\varepsilon / 2 \\
& =\varepsilon
\end{aligned}
$$

Thus, $f_{n} \rightarrow f$ uniformly on A.
(2) Apply part 1 to

$$
S_{n}(z)=\sum_{k=1}^{n} g_{k}(z)
$$

Then you'll get that $\sum_{k=1}^{\infty} g_{k}(z)$ converges
uniformly on A if for every $\varepsilon>0$ there is an $N>0$ where if $n \geqslant N$ then $\underbrace{\left|s_{n}(z)-s_{n+p}(z)\right|<\varepsilon}$

$$
\left|\sum_{k=1}^{n} g_{k}(z)-\sum_{k=1}^{n+p} y_{k}(z)\right|=\left|\sum_{k=n+1}^{n+p} g_{k}(z)\right|
$$

for all $z \in \mathbb{A}, p \geqslant 1$,

