Math 5680 2/27/23

Ratio Test Let $\sum_{k=1}^{r} b_k$ be a series of complex numbers Suppose that $r = \lim_{k \to \infty} \left| \frac{b_{k+1}}{b_k} \right|$

exists. (i) If r < 1, then $\sum_{k=1}^{\infty} b_k$ converges (ii) If r > 1, then $\sum_{k=1}^{\infty} b_k$ diverges.

3 If r=1, then the test is inconclusive, the series may converge or diverge.

proof: casel: Suppose 0 ≤ r < 1. Let r'ER with r<r'<1. Since we have a sequence of real numbers | <u>bkti</u> converging tor, there must exist N>0 where if $k \ge N$, then $\left| \frac{b_{k+1}}{b_k} \right| < \Gamma$. $\frac{Why?}{Set \Sigma = \frac{\Gamma'-\Gamma}{2} \Gamma'$ (k?N) Then 3N>0 r+2- Detter
 Det where if RZN then r-2+ brti <r+2 NI

 $=\frac{\Gamma}{2}+\frac{\Gamma}{2}<\frac{\Gamma}{2}+\frac{\Gamma}{2}=\Gamma'$ then Thus, if kZN $|b_{R}| < r'|b_{R-1}| < (r')^{c}|b_{R-2}|$ $< \cdots < (r')^{k-N} |b_N|$ The series $\sum_{k=0}^{\infty} (r')^{k-N} |b_N|$ k=N $= |b_N| \sum_{k=N}^{\infty} (r')^{k-N}$ $= |b_{N}| \left(|+r'+(r')^{2}+(r')^{3}+...\right)$

(geometric) sum $= |b_{N}| \frac{1}{1 - r'}$ Since 0 < r' < 1, Since $|b_{\mathcal{R}}| < (r')^{k-\mathcal{N}} |b_{\mathcal{N}}|$ For all k > N and $\sum_{k=N}^{\infty} (r')^{k-N} |b_N|$ Converges, by the comparison test (Hw 1 #5), We Know 2 | b_k| converges. k=N

By HW 1 # 2, this implies $\sum_{k=1}^{\infty} |b_k|$ converges.

Thus, She converges absolutely. k=1

Case 2: Suppose
$$r > 1$$
.
Choose $r' \in |R|$ with $| < r < r$.
There must exist $N > 0$ where
if $R > N$ then $\left| \frac{b_{R+1}}{b_R} \right| > r'$.
Why?
Let $r - r'$
 $r + \epsilon = \frac{1}{2}$
There exists $N > 0$
where if $R > N$
 $\left| \frac{b_{R+1}}{b_R} \right| > r - \epsilon$
 $r + \epsilon = \frac{1}{2}$
 $r +$

Then,

$$\begin{aligned} |b_{N+P}| > r' |b_{N+P-1}| > (r')^{2} |b_{N+P-2}| \\ > \cdots > (r')^{P} |b_{N}| \end{aligned}$$

$$\begin{aligned} \text{Thus,} \\ \lim_{R \to \infty} |b_{R}| &= \lim_{P \to \infty} |b_{N+P}| \\ &> \lim_{P \to \infty} (r')^{P} |b_{N}| \\ &= \lim_{F \to \infty} (r')^{P} |b_{N}| \\ &= \max \left(\operatorname{since} |< r' \right) \end{aligned}$$

Thus,
$$\lim_{k \to \infty} b_k \neq 0$$
.
By the divergence test $\sum_{k=1}^{\infty} b_k$
diverges.
Case 3: Suppose $r = 1$.
The test is inconclusive.
For example, $\sum_{n=1}^{\infty} \frac{1}{n} has$
 $\lim_{k \to \infty} \left| \frac{1}{k} \right| = \lim_{k \to \infty} \left| \frac{1}{k} \right| = 1 \leftarrow r$
and $\sum_{n=1}^{\infty} \frac{1}{n} diverges$
For example, $\sum_{n=1}^{\infty} \frac{1}{n^2} has$

 $\lim_{k \to \infty} \frac{\left(\frac{k}{k+1}\right)^2}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{\frac{k^2}{(k+1)^2}}{(k+1)^2} = \left(\frac{k}{k}\right)^2 = \left(\frac{k}{k}$ and S n² converges.

HW 2 #5
Let
$$g(z) = \sum_{n=1}^{\infty} \frac{1}{n! z^n}$$

 $A = \mathbb{C} - \{0\}$
(a) Show g is analytic on A
(b) Find a formula for g' on A.
proof: We use the
analytic convergence theorem.
Let D be a closed disc in A.
Let D have center zo and
radius r.
So, $D = \{z \in [1z-z_0] \leq r\}$

let $S = |Z_0| - \Gamma > O$ Claim: If ZED, then 12178. pf of claim: Let ZED. Then, $|Z - Z_0| \leq \Gamma$. Thus, $|Z_0| = |Z_0 - Z + Z|$ $\leq |z_{o}-z|+|z|$ = | Z - Z 0 | + | Z (= r + |Z|.

So,
$$|Z_0| - r \leq |Z|$$
.
Thus, $S \leq |Z|$. Claim
Thus, if $Z \in D$, then
 $|J| \cdot |Z| = |I| \cdot |Z|^n \leq |I| \cdot |S|^n$
Let $M_n = |I| \cdot |S|^n$
Does $\sum_{n=1}^{\infty} M_n$ converge?
Let's use the ratio test

$$\lim_{n \to \infty} \left| \frac{M_{n+i}}{M_n} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+i)!} \frac{1}{S^{n+i}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n!}{(n+i)!} \cdot \frac{S^n}{S^{n+i}} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+i)S} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n!}{(n+i)!} \cdot \frac{S^n}{S^{n+i}} \right| = \sum_{n \to \infty} \left| \frac{1}{(n+i)S} \right|$$

$$= 0 \neq \Gamma$$

Since
$$0 < 1$$
, by the ratio test

$$\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{s^n} \text{ converges}$$

By the Weierstrass M-test
the series
$$\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{2^n}$$
 converges
vnifumly (and absolutely) on D.

By the analytic convergence theorem (a) $g(z) = \sum_{n=1}^{\infty} \frac{1}{n!} \cdot \frac{1}{z^n}$ is analytic on A,

(b) if $Z \in A$, then $g'(z) = \sum_{n=1}^{\infty} \left(\frac{1}{n!} \frac{1}{z^n}\right)^n = -n\overline{z}^{n-1}$ $= \frac{\omega}{2} - \frac{1}{n!} \frac{1}{2^{n+1}}$

 $= - \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \frac{1}{Z^{n+1}}$