Math 5680
2/27/23

Ratio Test Let $\sum_{k=1}^{\infty} b_{k}$. be a series of complex numbers suppose that

$$
r=\lim _{k \rightarrow \infty}\left|\frac{b_{k+1}}{b_{k}}\right|
$$

exists.
(1) If $r<1$, then $\sum_{k=1}^{\infty} b_{k}$ converges absolutely.
(2) If $r>1$, then $\sum_{k=1}^{\infty} b_{k}$ diverges.
(3) If $r=1$, then the test is inconclusive, the series may converge or diverge.
proof:
case 1: Suppose $0 \leq r<1$.
Let $r^{\prime} \in \mathbb{R}$ with $r<r^{\prime}<1$.
Since we have a sequence of real numbers $\left|\frac{b_{k+1}}{b_{k}}\right|$ converging to r, there must exist $N>0$ where if $k \geqslant N$, then $\left|\frac{b_{k+1}}{b_{k}}\right|<r^{\prime}$.

$$
=\frac{r^{\prime}}{2}+\frac{r}{2}<\frac{r^{\prime}}{2}+\frac{r^{\prime}}{2}=r^{\prime}
$$

Thus, if $k \geqslant N$ then

$$
\begin{array}{r}
\left|b_{k}\right|<r^{\prime}\left|b_{k-1}\right|<\left(r^{\prime}\right)^{2}\left|b_{k-2}\right| \\
<\cdots<\left(r^{\prime}\right)^{k-N}\left|b_{N}\right|
\end{array}
$$

The series

$$
\begin{aligned}
& \sum_{k=N}^{\infty}\left(r^{\prime}\right)^{k-N}\left|b_{N}\right| \\
& =\left|b_{N}\right| \sum_{k=N}^{\infty}\left(r^{\prime}\right)^{k-N} \\
& =\left|b_{N}\right|\left(1+r^{\prime}+\left(r^{\prime}\right)^{2}+\left(r^{\prime}\right)^{3}+\ldots 0\right)
\end{aligned}
$$

$$
=\left|b_{N}\right| \frac{1}{1-r^{\prime}} \quad\binom{\text { geometric }}{\text { sum }}
$$

since $0<r^{\prime}<1$.
Since $\left|b_{k}\right|<\left(r^{\prime}\right)^{k-N}\left|b_{N}\right|$
for all $k \geqslant N$ and $\sum_{k=N}^{\infty}\left(r^{\prime}\right)^{k-N}\left|b_{N}\right|$ converges, by the comparison test (How 1 \#5), we know $\sum_{k=N}^{\infty}\left|b_{k}\right|$ converges.
By HW 1 \#2, this implies $\sum_{k=1}^{\infty}\left|b_{k}\right|$ converges.

Thus, $\sum_{k=1}^{\infty} b_{k}$ converges absolutely.
Case 2: Suppose $r>1$.
Choose $r^{\prime} \in \mathbb{R}$ with $1<r^{\prime}<r$.
There must exist $N>0$ where if $k \geqslant N$ then $\left|\frac{b_{k+1}}{b_{k}}\right|>r^{\prime}$.

Then,

$$
\begin{aligned}
\left|b_{N+p}\right| & >r^{\prime}\left|b_{N+p-1}\right|>\left(r^{\prime}\right)^{2}\left|b_{N+p-2}\right| \\
& >\cdots>\left(r^{\prime}\right)^{p}\left|b_{N}\right|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|b_{k}\right| & =\lim _{p \rightarrow \infty}\left|b_{N+p}\right| \\
& >\lim _{p \rightarrow \infty}\left(r^{\prime}\right)^{p} \underbrace{\left|b_{N}\right|}_{\text {fixed }} \\
& =\infty \quad\left(\text { since } 1<r^{\prime}\right)
\end{aligned}
$$

Thus, $\lim _{k \rightarrow \infty} b_{k} \neq 0$.
By the divergence test $\sum_{k=1}^{\infty} b_{k}$ diverges.

Case 3: Suppose $r=1$.
The test is inconclusive.
For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ has

$$
\lim _{k \rightarrow \infty}\left|\frac{1}{\frac{k+1}{k}}\right|=\lim \left|\frac{k}{k+1}\right|=1 \leftarrow r
$$

and $\sum_{n=1}^{\infty} \frac{1}{n} \frac{\text { diverges }}{\infty}$
For example, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ has

$$
\lim _{k \rightarrow \infty}\left|\frac{\frac{1}{(k+1)^{2}}}{\frac{1}{k^{2}}}\right|=\lim _{k \rightarrow \infty}\left|\frac{k^{2}}{(k+1)^{2}}\right|=1 \leftarrow r
$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

HF $2 \# 5$
Let $g(z)=\sum_{n=1}^{\infty} \frac{1}{n!z^{n}}$

$$
A=\mathbb{C}-\{0\}
$$

(a) Show g is analytic on A
(b) Find a formula for g^{\prime} on A.
proof: We use the
analytic convergence theorem.
Let D be a closed disc in A.
Let D have center Z_{0} and radius r.
So, $D=\left\{z| | z-z_{0} \mid \leq r\right\}$

Let

$$
\delta=\left|z_{0}\right|-r>0
$$

Claim: If $z \in D$, then $|z| \geqslant \delta$.

pf of claim: Let $z \in D$.
Then, $\left|z-z_{0}\right| \leq r$.
Thus,

$$
\begin{aligned}
\left|z_{0}\right| & =\left|z_{0}-z+z\right| \\
& \leq\left|z_{0}-z\right|+|z| \\
& =\left|z-z_{0}\right|+|z| \\
& =r+|z| .
\end{aligned}
$$

So, $\underbrace{\left|z_{0}\right|-r}_{\delta} \leq|z|$.
Thus, $\delta \leq|z|$. claim

Thus, if $z \in D$, then

$$
\left|\frac{1}{n!} \cdot \frac{1}{z^{n}}\right|=\frac{1}{n!} \cdot \frac{1}{|z|^{n}} \leq \underbrace{\frac{1}{n!} \frac{1}{\delta^{n}}}_{M_{n}}
$$

Let $M_{n}=\frac{1}{n!} \frac{1}{\delta^{n}}$.
Does $\sum_{n=1}^{\infty} M_{n}$ converge?
Let's use the ratio test

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{M_{n+1}}{M_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{(n+1)!} \frac{1}{\delta^{n+1}}}{\frac{1}{n!} \frac{1}{\delta^{n}}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n!}{(n+1)!} \cdot \frac{\delta^{n}}{\delta^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{(n+1) \delta}\right| \\
& (n+1)!=(n+1) \cdot[n!]=0+[r
\end{aligned}
$$

Since $0<1$, by the ratio test $\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{\delta^{n}}$ converges
By the Weierstrass M-test the series $\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{z^{n}}$ converges uniformly (and absolutely) on D.

By the analytic convergence theorem
(a) $g(z)=\sum_{n=1}^{\infty} \frac{1}{n!} \cdot \frac{1}{z^{n}}$ is
analytic on A, and
(b) if $z \in A$, then

$$
\begin{aligned}
g^{\prime}(z) & =\sum_{n=1}^{\infty}\left(\frac{1}{n!} \frac{1}{z^{n}}\right)^{\prime} \\
& =\sum_{n=1}^{\infty} \frac{-n}{n!} \cdot \frac{1}{z^{n+1}}
\end{aligned}
$$

$$
\left(z^{-n}\right)^{\prime}
$$

$$
=-n z^{n-1}
$$

$$
=-\sum_{n=1}^{\infty} \frac{1}{(n-1)!} \frac{1}{z^{n+1}}
$$

