Math 5680 2/22/23

We continue the proof from last time

$$\frac{2}{2}a_{n}(z-z_{0})^{n} \text{ is a power series.} \\
\text{Ne set } R= \sup_{n=0}^{\infty} (S) \text{ where} \\
S = \{r \ge 0 \mid \sum_{n=0}^{\infty} |a_{n}|r^{n} \text{ converges}\}$$
For $R=0$ we showed that $\sum_{n=0}^{\infty} a_{n}(z-z_{0})^{n}$ converger
if $|z-z_{0}| < R$ and diverges if $|z-z_{0}| > R$.
Then we assumed $R > 0$.
We showed $\sum_{n=0}^{\infty} a_{n}(z-z_{0})^{n}$
where $A_{r} = \{z \mid |z-z_{0}| \le r\}$.
Where $A_{r} = \{z \mid |z-z_{0}| \le r\}$.

From last class we had that
$$\underset{n=0}{\overset{s}{\underset{n=0}{}}a_{n}(z-z_{0})^{n}$$

(onverges uniformly and absolutely on Ar
and thus also on D.
Now let's show the divergence part.
Suppose $z_{1} \in \mathbb{C}$ with
 $r_{0} = |z_{1} - z_{0}| > R$
and $\underset{n=0}{\overset{s}{\underset{n=0}{}}a_{n}(z_{1}^{-}z_{0})^{n}$
converges [we want it
to diverge]
Then, lim $a_{n}(z_{1}^{-}z_{0})^{n} = O$
Since this sequence converges, its bounded.
So, $|a_{n}|r_{0}^{n} = |a_{n}(z_{1}^{-}z_{0})^{n}| \leq M$ where M>D
So, $|a_{n}|r_{0}^{n} = |a_{n}(z_{1}^{-}z_{0})^{n}| \leq M$ where M>D
Thus, by the Abel-Weierstrass theorem if
 $R < r < r_{0}$ then
 $\overset{s}{\underset{n=0}{\overset{s}{\underset{n=0}{}}a_{n}(z_{-}z_{0})^{n}}$ converges absolutely if
 $Z \in A_{r} = \{z \mid |z-z_{0}| \leq r\}$

Thus,
$$\sum_{n=0}^{\infty} |a_n| t^n$$
 converges for all t
where $R < t < r$

This says
$$t \in S$$
 and $R < t$.
But $R = \sup (S)$.
Contradiction.
Thus, $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ diverges
When $|z_1 - z_0| > R$.

Theorem: Let
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

be a power series defined on
 $A = D(z_0; R)$ where R is the
radius of convergence of f.
Then,
 D f is analytic in A
 $(2) f'(z) = \sum_{n=1}^{\infty} na_n (z-z_0)^n + 1$
for $z \in A$. This series
has the same radius
radius of convergence R.

and
$$(3) a_n = \frac{f^{(n)}(z_0)}{n!}$$

proof: The last theorem
showed that
$$f(z) = \sum_{n=0}^{\infty} a_n(z-z_n)^n$$

converges absolutely and uniformly
on any closed disc in A.
Thus, by the analytic convergence
theorem f is analytic on A
and $f'(z) = \sum_{n=1}^{\infty} n a_n(z-z_n)^{n-1}$
for all $z \in A$.
So the radius of convergence of
 $f'(z)$ is at least R.
(an it be bigger ?
Suppose $z_i \in C$ with $r_0 = |z_i - z_0| > R$
and $\sum_{n=1}^{\infty} n a_n(z_i - z_n)^{n-1}$ converged.
(we want it to diverge)

Then,

$$\lim_{n \to \infty} n a_n (z_1 - z_0)^{n-1} = 0$$

$$\lim_{n \to \infty} |n a_n \Gamma_0^{n-1}| = \lim_{n \to \infty} |n a_n (z_1 - z_0)^{n-1}| = 0$$
So, $(n |a_n| \Gamma_0^{n-1})_{n=1}^{\infty}$ converges.
So, $(n |a_n| \Gamma_0^{n-1})_{n=1}^{\infty}$ converges.
So, its bounded.
That is, $n |a_n| \Gamma_0^{n-1} \leq M$ for all
 $n \geq 1$ for some $M > 0$.
Thus,
 $|a_n| \Gamma_0^n = |a_n \Gamma_0^n| = |n a_n \Gamma_0^{n-1}| |\frac{\Gamma_0}{n}|$
 $\leq M \Gamma_0$
for all $n \geq 1$.

Let $M' = \max \{ Mr_o, |a_o|r_o \}$. Then, $|a_n|r_n \leq M'$ for $n \geq 0$. By the A&W theorem $\leq q_{n}(z-z_{o})^{n}$ converges on $A_r = \{2 \mid |2 - 20 \leq r\}$ for any r with ゼ $0 < r < f_{0}$. with PICK Some r Zo, $0 < R < r < r_0.$ This is a contradiction. Thus,

We get 2 $f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0) + \cdots$ $f'(z) = a_1 + 2a_2(z - z_0) + 3a_3(z - z_0) + \cdots$

$$F''(z) = 2a_{2} + 3 \cdot 2a_{3}(z - z_{0}) + 4 \cdot 3 \cdot a_{4}(z - z_{0})^{2} + \cdots$$

In general,

$$f^{(k)}(z) = k! a_k + \sum_{n=k+1}^{\infty} n(n-1)(n-2) \cdots (n-k+1) a_n(z-z_0)$$

Plug
$$z = z_0$$
 in to get
 $f^{(k)}(z_0) = k! a_k + \sum_{n=k+1}^{\infty} 0$

Theorem (Uniqueners of Power Serier) 1 T $\sum_{n=0}^{\infty} \alpha_{n} (2-2_{0})^{n} = f(z) = \sum_{n=0}^{\infty} b_{n} (2-2_{0})^{n}$

for all ZED(Zojr) with r>0, then $a_n = b_n$ for all n>0

 $\frac{\text{proof:}}{\alpha_n} = \frac{f^{(n)}(z_0)}{n!} = b_n \quad \square$