Math 5680 2/20/23

Def: A power series is a
series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

$$= a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$
Where z_0, a_n are constants in \mathbb{C}
We say that the power series
is centered at z_0 .

Ex:
$$\sum_{n=0}^{\infty} z^{n} = |+ z + z^{2} + z^{3} + \cdots$$

is centered at Zo=0

This series converges when
$$|z| < |$$

to $\frac{1}{1-z}$
 $\underbrace{\int_{z=1}^{z} |z| < |}_{z=1}$
 $\underbrace{\int_{z=1}^{z} |z| < |}_{z=1}$
 $\underbrace{\int_{z=0}^{z} |z| < |}_{z=1}$
 $= |-(z-1)^{2} - (z-1)^{2} - (z-1)^{3} + \cdots$
is centered at $z_{0} = |$

What will happen is this

Lemma: (Abel-Weierstrass lemma) Let GER, ane C, n>0. Suppose that ro>0 and there exists M>O where MEIR such that $|a_n|r_0^n \leq M, \forall n > 0.$ Then for $r < \Gamma_0$, the series $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ converges uniformly and absolutely on the clored disc $A_{\Gamma} = \frac{2}{2} |z - z_{0}| \leq \Gamma$ - • Z.

proof: Suppose
$$r_0 > 0$$
 and
 $|a_n|r_0^n \leq M$ for all $n \geq 0$.
Let $r < r_0$.
Let $z \in A_r = \frac{2}{2} |z-z_0| \leq r^3$.
Then,
 $|a_n(z-z_0)^n| = |a_n||z-z_0|^n$
 $\leq |a_n|r_0^n \cdot (\frac{r}{r_0})^n$
 $\leq M(\frac{r}{r_0})^n$
Let $M_n = M(\frac{r}{r_0})^n$.

Note that $\sum_{n=0}^{\infty} M_n = \sum_{n=0}^{\infty} M(\frac{\Gamma}{r_0})^n = M \frac{1}{1 - \frac{\Gamma}{r_0}}$ That is, $\sum_{n=0}^{\infty} M_n$ converges, r_{\circ} So, by the Weierstrass M-test $\sum_{n=1}^{\infty} \alpha_n (z-z_0)^n$ converges absolutely n = 0and uniformly on Ar. yummy yummy root beer

Theorem (Power Series Convergence)
Let
$$\sum_{n=0}^{\infty} a_n(z-z_n)^n$$
 be a power series.
Then there exists a unique number
R ≥ 0 , possibly ∞ , called the
radius of convergence, such that
if $|z-z_n| < R$ then the series
will converge and if $|z-z_0| > R$
then the series will diverge.
the unvergence
is absolute and
uniform on every
closed disc contained in
 $A = \{z \mid |z-z_0| < R\}$ Converges on A
diverge outside of A
unknown on boundary

proof: Let

$$S = \{r \ge 0 \mid \sum_{n=0}^{\infty} |a_n| r^n \text{ converges} \}$$
Let $R = \sup(S)$. \checkmark (least upper bound of S)
First suppose $R = 0$.
Then $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ converges for
all z where $|z-z_0| < R$ since
there are no such z .
Suppose $z_i \in \mathbb{C}$ where $r_0 = |z_i - z_0| > R$
We want to show that $\sum_{n=0}^{\infty} a_n(z_i - z_0)^n$
diverges.

Suppose instead
$$\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$$

converges,
Then $\lim_{n\to\infty} a_n(z_1-z_0)^n = 0$ by the
divergence
theorem.
Thus,
 $\lim_{n\to\infty} |a_n|r_0^n = \lim_{n\to\infty} |a_n||z_1-z_0|^n = 0$
 $n\to\infty$
Since the sequence $(|a_n|r_0^n)_{n=0}^{\infty}$
converges, it is bounded.
So, $|a_n|r_0^n \leq M$ for some M>C
where $n>0$.

By the Abel-Weierstrass theorem,

if
$$0 < r < r_0$$
 then $\sum_{n=0}^{\infty} a_n(z-z_0)^n$
converges absolutely for all
 $z \in A_r = \frac{2}{2} \frac{1}{2-20|sr^3}$.
So, $\sum_{n=0}^{\infty} \frac{1}{a_n|z-20|n}$ converges
for all $z \in A_r$ with $0 < r < r_0$.
Thus, $\sum_{n=0}^{\infty} \frac{1}{a_n|r^n}$ converges for
 $n=0$
all r with $R=0 < r < r_0$.
This contradicts that
 $R = sup(S)$ because we
would have $r \in S$ and $R < r_0$.

So,
$$\sum_{n=0}^{\infty} a_n(z_1-z_0)^n$$
 diverges
When $|z_1-z_0| > R$.
Now suppose $R = \sup(S) > O$
Let $0 < r_0 < R$.
If $\sum_{n=0}^{\infty} |a_n| r_0^n$ diverged then by the
comparison test $\sum_{n=0}^{\infty} |a_n| r^n$
Would diverge for $r_0 < r < R$.
Since $R = \sup(S)$ there
exists $r \in S$ where $r_0 < r < R$.
Since $R = \sup(S)$ there
 $r_0 < r_0 < R$.

Since res we know
$$\sum_{n=0}^{\infty} |a_n|r^n$$

converges.
Thus, by above
if $0 \le r_0 \le R$, then
 $\sum_{n=0}^{\infty} |a_n|r_0^n$ converges.
 $n=0$
Thus, $\lim_{n\to\infty} |a_n|r_0^n = 0$
Thus, $(|a_n|r_0^n)$ is a convergent
Thus, $(|a_n|r_0^n)$ is a convergent
sequence and hence is bounded.
So there exists M>D where
 $|a_n|r_0^n \le M$ for all $n \ge 0$.

By the Abel-Weicrstrass theorem

$$\sum_{n=0}^{\infty} a_n(2-2n)^n \text{ converges}$$

$$\sum_{n=0}^{n=0} a_n d \text{ absolutely on}$$

$$A_r = 2 \neq (12-2n) \leq r^2$$
for any $r < r_0 < R$.
Note if z satisfies $12-2n|.
Note if $z \leq n$ and $z \leq n$ and $z \leq n$.
So, $\sum_{n=0}^{\infty} a_n(2-2n)^n$ converges
for all $z \leq n$ with $12-2n|.
For all $z \in N$.$$$$$$

