Math 5680

$$
2 / 20 / 23
$$

Def: A power series is a series of the form

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
& =a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots
\end{aligned}
$$

where z_{0}, a_{n} are constants in \mathbb{C}
We say that the power series is centered at z_{0}.

Ex: $\sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+z^{3}+\cdots$
is centered at $z_{0}=0$

This series converges when $|z|<1$ to $\frac{1}{1-z}$

$$
\begin{aligned}
\text { Ex: } & \sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n} \\
= & 1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots
\end{aligned}
$$

is centered at $z_{0}=1$
What will happen is this
series will have a disc centered at $z_{0}=1$ that it converges on,

Lemma: (Abel-Weierstrass lemma)
Let $r_{0} \in \mathbb{R}, a_{n} \in \mathbb{C}, n \geqslant 0$.
Suppose that $r_{0}>0$ and
there exists $M>0$ where $M \in \mathbb{R}$
such that $\left|a_{n}\right| r_{0}^{n} \leq M, \forall n \geqslant 0$.
Then for $r<r_{0}$, the
series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges
uniformly and absolutely
on the closed disc

$$
A_{r}=\left\{z| | z-z_{0} \mid \leq r\right\}
$$

proof: Suppose $r_{0}>0$ and $\left|a_{n}\right| r_{0}^{n} \leqslant M$ for all $n \geqslant 0$.
Let $r<r_{0}$.
Let $z \in A_{r}=\left\{z| | z-z_{0} \mid \leq r\right\}$.
Then,

$$
\begin{aligned}
\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\left|a_{n}\right|\left|z-z_{0}\right|^{n} \\
& \leq\left|a_{n}\right| r^{n} \\
& =\left|a_{n}\right| r_{0}^{n} \cdot\left(\frac{r}{r_{0}}\right)^{n} \\
& \leq M\left(\frac{r}{r_{0}}\right)^{n}
\end{aligned}
$$

Let $M_{n}=M\left(\frac{r}{r_{0}}\right)^{n}$.

Note that

$$
\begin{aligned}
& \text { Vote that } \\
& \sum_{n=0}^{\infty} M_{n}=\sum_{n=0}^{\infty} M\left(\frac{r}{r_{0}}\right)^{n}=M \frac{1}{1-\frac{r}{r_{0}}}
\end{aligned}
$$

That is, $\sum_{n=0}^{\infty} M_{n}$ converges $\begin{aligned} & \frac{r}{r<r_{0}} \\ & \frac{r}{r_{0}}<1\end{aligned}$
So, by the Weierstrass M-test $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely and uniformly on A_{r}.

Theorem (Power Series Convergence) Let $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series. Then there exists a unique number $R \geqslant 0$, possibly ∞, called the radius of convergence, such that if $\left|z-z_{0}\right|<R$ then the series will converge and if $\left|z-z_{0}\right|>R$ then the series will diverge. Furthermore, the convergence is absolute and uniform on every closed disc contained in

$$
A=\left\{z| | z-z_{0} \mid<R\right\}
$$ converges on A

diverge out side of A unknown on boundary
proof: Let

$$
S=\left\{r \geqslant 0\left|\sum_{n=0}^{\infty}\right| a_{n} \mid r^{n} \text { converges }\right\}
$$

Let $R=\sup (S)$.
least upper bound of S

First suppose $R=0$.
Then $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges for
all z where $\left|z-z_{0}\right|<\underbrace{R}_{0}$, since there are no such z.
Suppose $z_{1} \in \mathbb{C}$ where $r_{0}=\left|z_{1}-z_{0}\right|>R$ We want to show that $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ diverges.

Suppose instead $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$
converges,
Then $\lim _{n \rightarrow \infty} a_{n}\left(z_{1}-z_{0}\right)^{n}=0$ by the divergence theorem.
Thus,

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right| r_{0}^{n}=\lim _{n \rightarrow \infty}\left|a_{n}\right|\left|z_{1}-z_{0}\right|^{n}=0
$$

Since the sequence $\left(\left|a_{n}\right| r_{0}^{n}\right)_{n=0}^{\infty}$ converges, it is bounded.
So, $\left|a_{n}\right| r_{0}^{n} \leqslant M$ for some $M>0$ where $n \geqslant 0$.

By the Abel-Weierstrass theorem,
if $0<r<r_{0}$ then $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely for all $z \in A_{r}=\left\{z| | z-z_{0} \mid \leqslant r\right\}$.
So, $\sum_{n=0}^{\infty}\left|a_{n}\right|\left|z-z_{0}\right|^{n}$ converges for all $z \in A_{r}$ with $0<r<r_{0}$.
Thus, $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ converges for all r with $R=0<r<r_{0}$.

This contradicts that $R=\sup (S)$ because we would have $r \in S$ and $R<r$.

So, $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ diverges when $\left|z_{1}-z_{0}\right|>R$.
Now suppose $R=\sup (S)>0$
Let $0<r_{0}<R$.
If $\sum_{n=0}^{\infty}\left|a_{n}\right| r_{0}^{n}$ diverged then by the $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ $n=0$
comparison test
$\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$
Would diverge for $\left.r_{0}<r<R.\right]$
Since $R=\sup (S)$ there exists $r \in S$ where $r_{0}<r<R$.

$$
S
$$

Since $r \in S$ we know $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ converges.
Thus, by above if $0<r_{0}<R$, then
$\sum_{n=0}^{\infty}\left|a_{n}\right| r_{0}^{n}$ converges.
Thus, $\lim _{n \rightarrow \infty}\left|a_{n}\right| r_{0}^{n}=0$
Thus, $\left(\left|a_{n}\right| r_{0}^{n}\right)$ is a convergent sequence and hence is bounded.
So there exists $M>0$ where $\left|a_{n}\right| r_{0}^{n} \leq M$ for all $n \geq 0$.

By the Abel-Weierstrass theorem $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges
uniformly and absolutely on

$$
A_{r}=\left\{z| | z-z_{0} \mid \leq r\right\}
$$

for any $r<r_{0}<R$.
Note if z satisfies $\left|z-z_{0}\right|<R$ then we can always find an r_{0} and r such that $z \in A$ r and $r<r_{0}<R$.
So, $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges
for all z with $\left|z-z_{0}\right|<R$.

Continued next time

