Math 5680 2/15/23

Theorem (Analytic Convergence Thm) DLet A be an open set in C. Let (fn) be a sequence of analytic functions defined on A. If $f_n \rightarrow f$ uniformly on every closed A_____, disc contained in A, disc contained is analytic. then f is analytic. Furthermore, $f'_n \rightarrow f'_n$ () f'_{isc} in A pointwise in A and uniformly on every closed dirc in A. (2) If (gk) is a sequence of analytic functions defined on an open set Å, and $g(z) = \sum_{k=1}^{3} g_k(z)$ converges uniformly on every closed disc in A

then
$$g(z)$$
 is analytic on A and
 $g'(z) = \sum_{k=1}^{\infty} g'_k(z)$ pointwise on A
and uniformly on every closed disc
in A.

proof: DLet ZOEA. that t is Our goal is to show analytic at Zo. Since A is open We can find r'>0 where D(Z;r') is contained in A. Pick some $\Gamma < \Gamma'$

Then $D(Z_{oj}\Gamma) = \{Z \mid |Z - Z_{o}| \leq \Gamma \}$ is contained in A. Since fn > f uniformly on D(Zojr) by assumption, this implies $f_n \rightarrow f$ uniformly on D(Zojr)={Z| |Z-Zo|<r] fn analytic Since each fris, Since cuch in D(Zojr) on A, and continuous on D(Zojr), thus by a previous than continuous on A since fn > f uniformly on D(Zojr) we know that

Fix continuous on D(Zojr). Let T be any triangular path Inside of D(Zojc). (J. Zo), Since each fr is Since each fr is D(zojr) analytic on T and Ínside of T, by Cauchy's theorem (Math 4680) We Know $\int f_n = 0$ for all n_o

By a previous theorem we have

$$O = \lim_{n \to \infty} \int_{T} f_n = \int_{n \to \infty} \lim_{n \to \infty} f_n = \int_{T} \int_{n \to \infty} f_n = \int_{T} \int_{n \to \infty} f_n = \int_{T} \int_{T} \int_{n \to \infty} f_n = \int_{T} \int_{T} \int_{n \to \infty} \int_{T} \int_{T$$

Thus,
$$\int f = 0$$
 for any triangular
path inside of $D(z_{0j}r)$.
By Morera's theorem, f is
analytic in $D(z_{0j}r)$.
So, f is analytic at Z_{0} .
We now show that $f_{n} \rightarrow f'$
uniformly on closed discs
in A .

Let B= 32 | 12-2015r} be a closed disc in A, where r70 and ZoEA. Zo By HW 2 (- Z problem A, we can choose p>r such that S is a circle contained in A of radius P that contains B In its interior. Orient & to be counterclockwise. For any ZEB we have

 $f'_{n}(z) = \frac{1}{2\pi i} \int_{V} \frac{f_{n}(w)}{(w-z)^{2}} dw$ 4680 Cauchy Integral $f'(z) = \frac{1}{2\pi\lambda} \int_{\mathcal{C}} \frac{f(w)}{(w-z)^2} dw$

Let Z > 0. Since $f_n \rightarrow f$ uniformly on inside $D(Z \circ j P) = \{Z \mid | Z - Z_0\} \leq P \} \neq and on \\ \delta$ there exists N>0 where if $n \ge N$ then $|f_n(z) - f(z)| < z \cdot \frac{(p-r)^2}{p}$ for all $Z \in D(Z_0; P)$

If w is on X and ZEB
then

$$|W-Z| \ge P-r$$

ie, $\frac{1}{|W-Z|} \le \frac{1}{(P-r)}$
Thus, if $n \ge N$ and ZEB then
 $|f_n'(Z) - f'(Z)| = \left| \frac{1}{2\pi i} \int \frac{f_n(W) - f(W)}{(W-Z)^2} dW \right|$
 $= \frac{1}{2\pi i} \left| \int_{X} \frac{f_n(W) - f(W)}{(W-Z)^2} dW \right|$

ZTTP

 $\frac{1}{2\pi} \cdot \frac{(p-r)^2}{(p-r)^2} \cdot \text{length}(\chi)$ UNY, Zisin B, NZN $\left|\frac{f_n(w) - f(w)}{(w - Z)^2}\right| = \frac{\left|f_n(w) - f(w)\right|}{|w - Z|^2}$ $< \xi \cdot (p - r)^{2}$ $(p-r)^2$ $= \Sigma$ fr > f' uniformly on B. 50, Set $f_n = \sum_{k=1}^{n} g_k$ and $f = \sum_{k=1}^{n} g_k$ (2 and apply D