$$
\begin{aligned}
& \text { Math } 5680 \\
& 2 / 15 / 23
\end{aligned}
$$

Theorem (Analytic Convergence Thu)
(1) Let A be an open set in \mathbb{C}. Let $\left(f_{n}\right)$ be a sequence of analytic functions defined on A.
If $f_{n} \rightarrow f$ uniformly on every closed disc contained in A, then f is analytic. Furthermore, $f_{n}^{\prime} \rightarrow f^{\prime}$ point wise in A
\qquad and uniformly on every closed disc in A.
(2) If $\left(g_{k}\right)$ is a sequence of analytic functions defined on an open set A_{1} and $g(z)=\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on every closed disc in A
then $g(z)$ is analytic on A and $g^{\prime}(z)=\sum_{k=1}^{\infty} g_{k}^{\prime}(z)$ pointwise on A and uniformly un every closed disc in A.
proof:
(1) Let $z_{0} \in A$.

Our goal is to show that f is analytic at Z_{0}.
Since A is open we can find $r^{\prime}>0$ where $D\left(z_{0} ; r^{\prime}\right)$ is contained in A. Pick some $r<r^{\prime}$.

Then

$$
\overline{D\left(z_{0} j r\right)}=\left\{z| | z-z_{0} \mid \leq r\right\}
$$

is contained in A.
Since $f_{n} \rightarrow f$ uniformly on $\overline{D\left(z_{0 j}\right) r}$ by assumption, this implies $f_{n} \rightarrow f$ uniformly on

$$
\begin{aligned}
& \text { uniformly on } \\
& D\left(z_{0 j} r\right)=\left\{z| | z-z_{0} \mid<r\right\}
\end{aligned}
$$

Since each f_{n} is continuous on $D\left(z_{0} j r\right)$, on A, and thus continuous on A by a previous the since $f_{n} \rightarrow f$ uniformly on A on $D\left(Z_{0 j r}\right)$ we know that
f is continuous on $D\left(z_{0 j r}\right)$.
Let T be any triangular path inside of $D\left(z_{0 ;} c\right)$
Since each f_{n} is analytic on T and inside of T, by Cauchy's theorem (Math 4680) we know

$$
\int_{T} f_{n}=0 \text { for all } n \text {. }
$$

By a previous theorem we have

$$
O=\lim _{n \rightarrow \infty} \underbrace{\int_{T} f_{n}}_{O} \stackrel{D}{=} \int_{T} \lim _{n \rightarrow \infty} f_{n}=\int_{T} f
$$

Thus, $\int_{T} f=0$ for any triangular path inside of $D\left(z_{0 j} j r\right)$.
By Morea's theorem, f is analytic in $D\left(z_{0, j}\right)$.
So, f is analytic at z_{0}.
We now show that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on closed discs in A.

Let

$$
B=\left\{z| | z-z_{0} \mid \leqslant r\right\}
$$

be a closed disc in A, where $r>0$ and $z_{0} \in A$.,
By HW 2
problem A,
we can choose
$p>r$ such that
γ is a circle contained in A of radius P that contains B in its interior.
orient γ to be counterclockwise. For any $z \in B$ we have

$$
\left.\begin{array}{l}
f_{n}^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{n}(w)}{(w-z)^{2}} d w \\
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{2}} d w
\end{array}\right] \begin{aligned}
& 4680 \\
& \text { cauchy } \\
& \text { Integral } \\
& \text { Th }
\end{aligned}
$$

Let $\varepsilon>0$
Since $f_{n} \rightarrow f$ uniformly on

$$
\begin{aligned}
& \text { Since } f_{n} \rightarrow f \text { unitormig on } \\
& D\left(z_{0} j p\right)
\end{aligned}=\left\{z| | z-z_{0} \mid \leqslant p\right\} \psi\left[\begin{array}{c}
\text { inside } \\
\text { and } \\
\text { on } \\
\gamma
\end{array}\right]
$$

there exists $N>0$
where if $n \geqslant N$ then

$$
\left|f_{n}(z)-f(z)\right|<\varepsilon \cdot \frac{(p-r)^{2}}{p}
$$

for all $z \in \overline{D\left(z_{0} ; p\right)}$

If W is on γ and $z \in B$ then

$$
\begin{aligned}
& |w-z| \geqslant p-r \\
& \text { ie, } \frac{1}{|w-z|} \leqslant \frac{1}{(p-r)}
\end{aligned}
$$

Thus, if $n \geqslant N$ and $z \in B$ then

$$
\begin{aligned}
& \left|f_{n}^{\prime}(z)-f^{\prime}(z)\right|=\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{n}(w)-f(w)}{(w-z)^{2}} d w\right| \\
& =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{f_{n}(w)-f(w)}{(w-z)^{2}} d w\right|
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{1}{2 \pi} \cdot \frac{\varepsilon \frac{(p-r)^{2}}{p}}{(p-r)^{2}} \cdot \sqrt{\text { length }(\gamma)} \\
& \begin{array}{r}
\left|\frac{f_{n}(w)-f(w)}{(w-z)^{2}}\right|= \\
\\
\quad<\frac{\left|f_{n}(w)-f(w)\right|}{|w-z|^{2}} \\
(p-r)^{2}
\end{array} \\
& =\varepsilon_{1} .
\end{aligned}
$$

So, $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on B.
(2) Set $f_{n}=\sum_{k=1}^{n} g_{k}$ and $f=\sum_{k=1}^{\infty} g_{k}$ and apply (1)

