Math 5680

$$
2 / 13 / 23
$$

Theorem: Let $\gamma:[a, b] \longrightarrow A$ be a piecewise-smooth curve where A is a region (open and path-connected)

$$
\gamma(t)=u(t)+i v(t)
$$

$$
a \leq t \leq b
$$

Let $f_{n}: A \rightarrow \mathbb{C}$ be continuous functions on A for $n \geqslant 1$.
Suppose $f_{n} \rightarrow f$ uniformly on A.
Then, $\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}=\int_{\gamma} \lim f_{n}=\int_{\gamma} f$
proof:
Since $f_{n} \rightarrow f$ uniformly on A and each f_{n} is continuous on A, by a previous theorem f is continuous on A.
Since f_{n} and f are continuous on A we know $\int_{\gamma} f_{n}$ and $\int_{\gamma} f$ exist. Let $\varepsilon>0$.
Since $f_{n} \rightarrow f$ uniformly on A there exists $N>0$ where if $n \geqslant N$ then $\left|f_{n}(z)-f(z)\right|<\frac{\varepsilon}{\operatorname{length}(\gamma)}$ for all $z \in A$.
$[\operatorname{length}(\gamma)$ is arclength $(\gamma)]$
Thus, if $n \geqslant N$, then

$$
\begin{aligned}
& \mid \underbrace{\int_{\gamma} f_{n}(z) d z}_{\text {sequence }}-\underbrace{\int_{\gamma} f(z) d z \mid}_{\text {limit }} \\
&=\left|\int_{\gamma}\left(f_{n}(z)-f(z)\right) d z\right| \begin{array}{l}
4680 \text { Thy } \\
\begin{array}{l}
\text { If }|g(z)| \leqslant M
\end{array} \\
\text { for all } \\
z \text { on } \gamma, \\
\text { then } \\
\left|\int_{\gamma} g(z) d z\right| \\
<M . l \text { length }(\gamma)
\end{array} \\
&<\frac{\varepsilon}{\text { length }(\gamma)} \cdot \text { length }(\gamma) \\
&=\varepsilon .
\end{aligned}
$$

So $\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}=\int_{\gamma} f$.

Corollary: Let $A \subseteq \mathbb{C}$ be a region (open and path-connected) Let $\gamma:[a, b] \rightarrow A$ be a piecewise-smooth curve in A. Suppose $g_{k}: A \rightarrow \mathbb{C}$ is continuous on A for each $k \geqslant 1$.

Suppose $\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on A.
means: $f_{n}(z)=\sum_{k=1}^{n} g_{k}(z) \leftarrow$ partial sums

$$
f(z)=\sum_{k=1}^{\infty} g_{k}(z)
$$

$f_{n} \rightarrow f$ uniformly on A
Then, $\int_{\gamma}\left(\sum_{k=1}^{\infty} g_{k}(z)\right) d z=\sum_{k=1}^{\infty}\left(\int_{\gamma} g_{k}(z) d z\right)$
Proof: See notes online.
Apply previous the to f_{n}, f given above in red.

Theorem (Analytic Convergence Thu)
(1) Let A be an open set in \mathbb{C}. Let $\left(f_{n}\right)$ be a sequence of analytic functions defined on A.
If $f_{n} \rightarrow f$ uniformly on every closed disc contained in A, then f is analytic. Furthermore, $f_{n}^{\prime} \rightarrow f^{\prime}$ point wise in A
\qquad and uniformly on every closed disc in A.
(2) If $\left(g_{k}\right)$ is a sequence of analytic functions defined on an open set A_{1} and $g(z)=\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly on every closed disc in A
then $g(z)$ is analytic on A and $g^{\prime}(z)=\sum_{k=1}^{\infty} g_{k}^{\prime}(z)$ pointwise on A and uniformly un every closed disc in A.

Ex: Let $S(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ be the Riemann zeta function.
We know $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ converges pointuise on

$$
A=\{z \mid \operatorname{Re}(z)>1\}
$$

Let's use
the analytic
convergence theorem

on $\rho(z)$.
Note $\frac{1}{n^{z}}$ is analytic on A
Recall: $\left(n^{-z}\right)^{\prime}=\log (n) \cdot n^{-z} \cdot(-1)$

$$
\begin{gathered}
a^{z}=-\log (n) \cdot n^{-z} \\
a^{\prime}=\log (a) \cdot a^{z} a \neq 0
\end{gathered}
$$

Let B be a closed disc in A, with center z_{0} and radius r.
Let

$$
\delta=\operatorname{Re}\left(Z_{0}\right)-1-r
$$

Let $z \in B$.
Then,

$$
\operatorname{Re}(z) \geqslant 1+\delta
$$

So if $z=x+i y$ then $x \geqslant 1+\delta$.

So,

$$
\begin{aligned}
\left|\frac{1}{n^{z}}\right| & =\left|n^{-z}\right|=\left|e^{-z \log (n)}\right| \\
& =\left|e^{-(x+i y)[\ln (n)+i a \operatorname{cg}(n)]}\right| \\
& =\mid e^{(-x-i y) \ln (n) \mid} \\
& =\left|e^{-x \ln (n)} e^{i(-y \ln (n))}\right|
\end{aligned}
$$

Set $M_{n}=\frac{1}{n^{1+\delta}}$
(i) Note that if $z \in B$
then $\left|\frac{1}{n^{z}}\right| \leqslant M_{n}$ for $n \geqslant 1$
(ii) And $\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{1+\delta}}$
converges since $1+\delta_{i}>1$
870
By the Weierstrass M-test $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ converges absolutely and uniformly on B.
Thus, by the analytic convergence theorem $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ is analytic on A
and

$$
\begin{aligned}
\rho^{\prime}(z)=\sum_{n=1}^{\infty}\left(\frac{1}{n^{z}}\right)^{\prime} & =\sum_{n=1}^{\infty} \frac{-\log (n)}{n^{z}} \\
& =\sum_{n=2}^{\infty} \frac{-\log (n)}{n^{z}}
\end{aligned}
$$

