Math 5680 2/13/23

Theorem: Let
$$\forall : [a,b] \rightarrow A$$

be a piecewise-smooth curve where
A is a region (open and path-connected)
R
a
b
 $\forall A \rightarrow C$ be continuous
functions on A fur n > 1.
Suppose $f_n \rightarrow f$ uniformly on A.
Then, $\lim_{n \to \infty} \int_{n}^{\infty} f_n = \int_{n}^{\infty} \lim_{x \to \infty} f_n = \int_{x}^{\infty} \lim_{x \to \infty} \int_{x}^{\infty} |f_n| = \int_$

proof: Since fn > f uniformly on A and each fn is continuous on A, by a previous theorem fis continuous on A. Since Fn and F are continuous on A we know Sfn and Sf exist. Let 270. Since fn -> f uniformly on A there exists N>D where if n>N then $\left|f_{n}(z)-f(z)\right| \leq \overline{\text{length}(\delta)}$ for all zeA.

 $\left| \operatorname{length}(\delta) \right|$ is $\operatorname{arclength}(\delta)$ Thus, if n>N, then $= \left\{ \begin{array}{l} \int_{\Sigma} f_n(z) dz - \int_{\Sigma} f(z) dz \\ \text{sequence} \\ \int_{\Sigma} (f_n(z) - f(z)) dz \\ \int_{\Sigma} (f_n(z) -$ 4680 Thm If |g(z)|≤M for all ZONY $< \frac{\varepsilon}{\text{length}(\delta)}$. length(δ) then $\left| \int g(z) dz \right|$ = \mathcal{L} . - c. Su lim $Sf_n = Sf$. NHON δ δ $\leq M \cdot \operatorname{leng}h(x)$

Suppose
$$\sum_{k=1}^{\infty} g_k(z)$$
 converges uniformly
on A.
(neans: $f_n(z) = \sum_{k=1}^{\infty} g_k(z) \leftarrow partial sums$
 $f(z) = \sum_{k=1}^{\infty} g_k(z)$
 $f_n \rightarrow f$ uniformly on A
Then, $\int_{k=1}^{\infty} g_k(z) dz = \sum_{k=1}^{\infty} \left(\int_{X} g_k(z) dz \right)$
Proof: See notes online.
Apply previous then to f_n, f_n
given above in red.

Theorem (Analytic Convergence Thm) DLet A be an open set in C. Let (fn) be a sequence of analytic functions defined on A. If $f_n \rightarrow f$ uniformly on every closed A_____, disc contained in A, disc contained is analytic. then f is analytic. Furthermore, $f'_n \rightarrow f'_n$ () f'_{isc} in A pointwise in A and uniformly on every closed dirc in A. (2) If (gk) is a sequence of analytic functions defined on an open set Å, and $g(z) = \sum_{k=1}^{3} g_k(z)$ converges uniformly on every closed disc in A

then
$$g(z)$$
 is unalytic on A and
 $g'(z) = \sum_{k=1}^{\infty} g'_k(z)$ pointwise on A
and uniformly on every closed disc
in A.

Ex: Let
$$S(z) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

be the Riemann zeta function.
We know $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges
pointwise on
 $A = \{z \mid Re(z) > 1\}$
Let's use
the analytic
convergence theorem V I

on
$$S(z)$$
.
Note $\frac{1}{n^{z}}$ is analytic on A
Recall: $(n^{-z})' = \log(n) \cdot n^{-z} \cdot (-1)$
 $= -\log(n) \cdot n^{-z}$
 $(a^{z})' = \log(a) \cdot a^{z} \cdot a \neq 0$

Let B be a closed disc in A, with Center Z, and 20 radius r. Let Zo $S = Re(Z_0) - | - \Gamma$

Let ZEB. (-)Then, Re(Z)>1+5 Jo if Z=X+iy then X>1+8. 20, $\left|\frac{1}{n^2}\right| = \left|\frac{-2}{n}\right| = \left|\frac{-2\log(n)}{2}\right|$ $= \begin{bmatrix} -(x+iy) \left[\ln(n) + i \alpha rg(n) \right] \\ \end{bmatrix}$ = |e|= | e e e

 $-\pi \leq \arg(n) < \pi$ $= \left| \begin{array}{c} -x \left| n(n) \right| \right| \left| \begin{array}{c} \hat{n}(-y) \left| n(n) \right| \right| \\ 0 \end{array} \right|$ arg(n)=0 $= \left| e^{-\chi \left[n(n) \right]} \right|$ $= \binom{1}{n(n^{-x})} \qquad (e^{i\theta} = 1) \\ \theta \in \mathbb{R}$ $= n^{-x} = \frac{1}{n^{x}} \leq \frac{1}{n^{1+\delta}}$ $\begin{array}{c} x > 1 + 8 \\ h^{\times} > n^{1 + 8} \end{array}$ Set $M_n = \frac{1}{n!+8}$ (i) Note that if ZEB

then
$$\left| \frac{1}{n^2} \right| \leq M_n$$
 for $n \geq 1$
(ii) And $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n!+8}$
converges since $1+8 > 1$
By the Weierstrass M-test
 $\sum_{n=1}^{\infty} \frac{1}{n!}$ and
 $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges absolutely and
N=1
Miformly on B.

Thus, by the analytic convergence
theorem
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is analytic on A

and $\infty \left(\frac{L}{h^2} \right) = \sum_{n=1}^{\infty} \left(\frac{L}{h^2} \right) = \sum_{n=1}^{\infty} \frac{-\log(n)}{h^2}$ $= \frac{log(n)}{h=2} + \frac{log(n)}{h^2}$