$$
\begin{aligned}
& \text { Math } 5680 \\
& 1 / 30 / 23
\end{aligned}
$$

Ex: Consider the $p$-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots
$$

where $p \in \mathbb{R}$.
One can show that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges iff $p>1$.

Proof: We will prove $(\lessgtr)$.
The other direction is in HW 1 . Let

$$
\begin{aligned}
& \text { Let } \\
& S_{k}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{k^{p}}
\end{aligned}
$$

be the $k-t h$ partial sum.

The sequence of partial sums

$$
\underbrace{\frac{1}{1^{p}}}_{S_{1}}, \frac{\frac{1}{1^{p}}+\frac{1}{2^{p}}}{s_{2}}, \frac{\left.\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}\right) \cdots .}{s_{3}}
$$

is an increasing sequence of real numbers.
Consider the sub-sequence gotten from $S_{2^{k}-1}$.

$$
\begin{aligned}
S_{2^{1}-1}=S_{1} & =\frac{1}{1^{p}}=\left(\frac{1}{2^{p-1}}\right)^{0} \\
S_{2^{2}-1}=S_{3} & =\frac{1}{1^{p}}+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right) \\
& \leq \frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{2^{p}} \\
& =\frac{1}{1^{p}}+\frac{2}{2^{p}}
\end{aligned}=\frac{1}{1^{p}}+\frac{1}{2^{p-1}} .
$$

$$
\begin{aligned}
S_{2^{3}-1}=S_{7} & =\frac{1}{1^{p}}+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)+\left(\frac{1}{4^{p}}+\frac{1}{S^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}\right) \\
& \leqslant \frac{1}{1^{p}}+\left(\frac{1}{2^{p}}+\frac{1}{2^{p}}\right)+\left(\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}+\frac{1}{4^{p}}\right) \\
& =\frac{1}{1^{p}}+\frac{2}{2^{p}}+\frac{4}{4^{p}} \\
& =\frac{1}{1^{p}}+\frac{1}{2^{p-1}}+\frac{1}{4^{p-1}} \\
& =\left(\frac{1}{2^{p-1}}\right)^{0}+\left(\frac{1}{2^{p-1}}\right)^{1}+\left(\frac{1}{2^{p-1}}\right)^{2}
\end{aligned}
$$

In general you can show that

$$
\begin{aligned}
& \text { In general you can } \\
& S_{2^{k}-1} \leq\left(\frac{1}{2^{p-1}}\right)^{0}+\left(\frac{1}{2^{p-1}}\right)^{\prime}+\left(\frac{1}{2^{p-1}}\right)^{2}+\cdots+\left(\frac{1}{2^{p-1}}\right)^{k-1} \text {. } \\
& \text {. } \\
& \text { nance } p>1 \text { we know }
\end{aligned}
$$

Note that since $p>1$ we know

$$
\left|\frac{1}{2^{p-1}}\right|<\frac{1}{2^{0}}=1
$$

Thus, $\sum_{n=0}^{\infty}\left(\frac{1}{2^{p-1}}\right)^{n}$ converges.

$$
\begin{aligned}
& \text { From above we get } \\
& S_{2^{n}-1} \leq \sum_{n=0}^{\infty}\left(\frac{1}{2^{p-1}}\right)^{n}=\frac{1}{1-1 / 2^{p-1}} \\
& \begin{array}{c}
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \\
|x|<1
\end{array}
\end{aligned}
$$

Consider $S_{l}$ where $l \geqslant 1$.
Pick a $k$ where $l \leq 2^{k}-1$.
Then since we have an increasing sequence,

$$
S_{l} \leqslant S_{2^{k}-1} \leqslant \frac{1}{1-1 / 2^{p-1}}
$$

Thus, $\left(S_{l}\right)_{l=1}^{\infty}$ is an increasing, bounded from above, sequence of real numbers.

From the monotone convergence theorem from Math 4650 we know $\left(S_{l}\right)_{l=1}^{\infty}$ converges.

Thus, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when $p>1$.
$(\underset{\sim}{*}) H W 1$.
Def: Let $\sum_{n=1}^{\infty} a_{n}$ be a series of complex numbers. We say that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Ex: Consider

$$
\frac{E x_{0}^{0} \text { Consider }}{\sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}=\frac{i}{1^{2}}-\frac{1}{2^{2}}-\frac{i}{3^{2}}+\frac{1}{4^{2}}+\frac{i}{5^{2}}-\cdots .}
$$

Does this series converge absolutely?

$$
\sum_{n=1}^{\infty}\left|\frac{i^{n}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{|i|^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \& \begin{gathered}
\text { converges } \\
p=2 \\
\text { series }
\end{gathered}
$$

Yes $\nabla_{0}^{\nabla}$ The series $\sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}$ converges $\begin{gathered}\text { absolutely }\end{gathered}$ absolutely.
$\frac{\text { Theorem: If }}{\infty} \sum_{n=1}^{\infty} a_{n}$ converges absolutely, then $\sum_{n=1}^{\infty} a_{n}$ converges.
proof: Let

$$
S_{k}=\sum_{n=1}^{k} a_{n}=a_{1}+a_{2}+\ldots+a_{k}
$$

$$
\hat{S}_{k}=\sum_{n=1}^{k}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{k}\right|
$$

be the partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$

Our assumption is that the sequence $\left(\hat{S}_{k}\right)_{k=1}^{\infty}$ converges.
We want to show this implies that $\left(S_{k}\right)_{k=1}^{\infty}$ converges.

Let $\varepsilon>0$.
Since $\left(\hat{S}_{k}\right)_{k=1}^{\infty}$ converges, it is a Cauchy sequence.
Thus there exists $N>0$ where if $n \geqslant m \geqslant N$, then $\left|\hat{S}_{n}-\hat{S}_{m}\right|<\varepsilon$ Suppose $n \geqslant m \geqslant N$.
case: If $n=m$, then

$$
\left|s_{n}-s_{m}\right|=\left|s_{n}-s_{n}\right|=0<\varepsilon
$$

case 2: If $n>m$, then

$$
\left|s_{n}-s_{m}\right|=\left|\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{m} a_{k}\right|
$$

$$
\begin{aligned}
& =\left|\sum_{k=m+1}^{n} a_{k}\right| \\
& \leqslant \sum_{k=m+1}^{n}\left|a_{k}\right| \\
& =\sum_{k=1}^{n}\left|a_{k}\right|-\sum_{k=1}^{m}\left|a_{k}\right| \\
& =\left|\sum_{k=1}^{n}\right| a_{k}\left|-\sum_{k=1}^{m}\right| a_{k}| | \\
& =\left|\hat{S}_{n}-\hat{S}_{m}\right|<\varepsilon
\end{aligned}
$$

Thus, $\left(S_{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence and hence converges.

Cauchy

Class question: $n=5, m=3$

$$
\begin{aligned}
\sum_{k=1}^{5} a_{k}-\sum_{k=1}^{3} a_{k} & =a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \\
& -a_{1}-a_{2}-a_{3} \\
= & a_{4}+a_{5} \\
= & \sum_{k=4}^{5} a_{k}
\end{aligned}
$$

Consequently, since $\sum_{n=1}^{\infty} \frac{i^{n}}{n^{2}}$
converges absolutely, it also converges.

Ex: (Riemann Zeta function)
Consider

$$
S(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}=\frac{1}{1^{z}}+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\cdots
$$

where $z \in \mathbb{C}$.
We will show that if $\operatorname{Re}(z)>1$ then $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ converges. $\operatorname{Re}(z)>1$


Recall

$$
\frac{1}{n^{z}}=n^{-z}=e^{-z \log (n)}
$$

where

$$
\log (n)=\ln |n|+i \arg (n)
$$

will will use the principal branch of $\log$ where

$$
-\pi<\arg (n)<\pi
$$



