Math 5680 1/23/23

HW O Topic - Sequences
Def: A sequence $\left(Z_{n}\right)_{n=1}^{\infty}$ is an ordered, infinite list of complex numbers.

Ex: Let $z_{n}=3+\frac{i}{n}$ where $n \geqslant 1$.

$$
\begin{aligned}
& z_{1}=3+i \\
& z_{2}=3+\frac{i}{2} \\
& z_{3}=3+\frac{i}{3} \\
& z_{4}=3+\frac{i}{4}
\end{aligned}
$$

$\vdots \quad \vdots$

$$
\begin{aligned}
& z_{1}=3+i \\
& z_{2}=3+\frac{i}{2} \\
& z_{3}=3+\frac{\pi}{3}
\end{aligned}
$$

Def: A sequence $\left(Z_{n}\right)_{n=1}^{\infty}$ of complex numbers converges to $L \in \mathbb{C}$ if for every $\varepsilon>0$ there exists $N>0$ where if $n \geqslant N$
then $\left|z_{n}-L\right|<\varepsilon$
If $\left(z_{n}\right)_{n=1}^{\infty}$ converges to L then we write $\lim _{n \rightarrow \infty} z_{n}=L$.

Theorem [math 4680]
Let $\left(z_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers and $L \in \mathbb{C}$.
Suppose $z_{n}=x_{n}+i y_{n}$ for $n \geqslant 1$ and $L=a+i b$.
Then, $\left.\lim _{n \rightarrow \infty} z_{n}=L\right]{ }_{4}^{4680}$-limit
iff $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$.

$$
4650 / \mathbb{R} \text {-limits }
$$

Proof: See 4680 notes

Ex: Let $z_{n}=\underbrace{\frac{z}{n}}_{x_{n}}+i \underbrace{\arctan (n)}_{y_{n}}$
Does z_{n} converge?
In \mathbb{R},

$$
\lim _{n \rightarrow \infty} \frac{z}{n}=0
$$

and

$$
\lim _{n \rightarrow \infty} \arctan (n)=\frac{\pi}{2}
$$

From the theorem

$$
\begin{aligned}
& \text { From the theorem } \\
& \begin{aligned}
\lim _{n \rightarrow \infty} z_{n} & =\lim _{n \rightarrow \infty} \frac{2}{n}+i \lim _{n \rightarrow \infty} \arctan (n) \\
& =0+i \frac{\pi}{2}=i \frac{\pi}{2}
\end{aligned}
\end{aligned}
$$

Def: A sequence $\left(z_{n}\right)_{n=1}^{\infty}$ of complex numbers is a Cauchy Sequence if for every $\varepsilon>0$ there exists $N>0$ where if $n, m \geqslant N$ then $\left|z_{n}-z_{m}\right|<\varepsilon$

Theorem: A sequence $\left(z_{n}\right)_{n=1}^{\infty}$ of complex numbers is Cauchy iff there exists $L \in \mathbb{C}$ where $\lim _{n \rightarrow \infty} z_{n}=L$ [Says: Cauchy iff converges]
proof:
(\triangleleft) Suppose $\left(z_{n}\right)_{n=1}^{\infty}$ converges to $L \in \mathbb{C}$. Let $\varepsilon>0$.
Since $\lim _{n \rightarrow \infty} z_{n}=L$ we know there
exists $N>0$ where if $n \geqslant N$ then $\left|z_{n}-L\right|<\frac{\varepsilon}{2}$.
Hence, if $n, m \geqslant N$, then

$$
\begin{aligned}
\left|z_{n}-z_{m}\right| & =\left|z_{n}-L+L-z_{m}\right| \\
& \leq\left|z_{n}-L\right|+\left|L-z_{m}\right| \\
& =\left|z_{n}-L\right|+\left|z_{m}-L\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Thus, $\left(z_{n}\right)$ is Cauchy.
$(\sqrt{)})$ Suppose $\left(z_{n}\right)_{n=1}^{\infty}$ is a Cauchy Let $z_{n}=x_{n}+i y_{n}$ for $n \geqslant 1$.
By HW O problem 3, since $\left(z_{n}\right)_{n=1}^{\infty}$ is Cauchy in \mathbb{C} we know that
$\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ are Cauchy in \mathbb{R}. From Math 4650 (Analysis I) since $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ are Cauchy by the completeness of \mathbb{R} we know there exist $x \in \mathbb{R}$ and $y \in \mathbb{R}$ where $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$.
Let $L=x+i y$.
By our previous theorem

$$
\begin{aligned}
& \text { By our previous theorem } \\
& \lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} x_{n}+i \lim _{n \rightarrow \infty} y_{n}=x+i y=L
\end{aligned}
$$

Theorem: Let $\left(z_{n}\right)_{n=1}^{\infty}$ and $\left(w_{n}\right)_{n=1}^{\infty}$ be sequences of complex numbers.
(1) Suppose $\lim _{n \rightarrow \infty} z_{n}=A$ and $\lim _{n \rightarrow \infty} w_{n}=B$
(a) If $\alpha, \beta \in \mathbb{C}$, then

$$
\begin{aligned}
& \text { If } \alpha, \beta \in \mathbb{C}, \text { then } \\
& \lim _{n \rightarrow \infty}\left(\alpha z_{n}+\beta w_{n}\right)=\alpha A+\beta B
\end{aligned}
$$

(b) $\lim _{n \rightarrow \infty}\left(z_{n} w_{n}\right)=A B$
(c) If $w_{n} \neq 0$ for all n and $B \neq 0$, then $\lim _{n \rightarrow \infty} \frac{z_{n}}{w_{n}}=\frac{A}{B}$
(2) If $\left(z_{n}\right)_{n=1}^{\infty}$ converges, then its bounded, that is there exists $M>0$ where $\left|z_{n}\right| \leqslant M$ for all $n \geqslant 1$.

