Math 5402 - Test 1

Note: Let R and S be rings. Recall that addition and multiplication in $R \times S$ is given by (a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac, bd).

Name: Solutions

Score	
1 (a,b)	
1 (c)	
1 (d)	
2	
3	
4	
Т	

- 1. [32 points 8 each]
 - (a) Prove that $\phi: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ given by $\phi(x) = (2x, x)$ a ring homomorphism.

$$\varphi((1,1)(1,1)) = \varphi(1,1) = (2,1)$$

$$\varphi(1,1) \varphi(1,1) = (2,1)(2,1) = (4,1)$$

(b) Is $\{\overline{0}, \overline{4}, \overline{8}\}$ a prime ideal of \mathbb{Z}_{12} ? Why or why not? (You may assume that it is an ideal.)

(c) Let $I = \{(-a, 3b) \mid a, b \in \mathbb{Z}\}$. Prove that I an ideal of $\mathbb{Z} \times \mathbb{Z}$.

$$(0,0) = (-0,3.0) \in I$$

② Let @ x,y ∈ I.

Then $x = (-a_1, 3b_1), y = (-a_2, 3b_2)$ Where $a_1, b_1, a_2, b_2 \in \mathbb{Z}$.

Then $x-y=(-(a,\overline{\bullet}a_z),3(b,-b_z))\in \mathbb{I}$

(3) Let $r \in \mathbb{Z} \times \mathbb{Z}$ and which $x \in \mathbb{I}$,

Then coccoop r = (m, n) and x = (-a, 3b) where $m, n, a, b \in \mathbb{Z}$.

So, $r \times = (-ma, 3Nb) = (-(ma), 3(nb)) \in I$

and $xr = arx \in I$.

By O,O,O) I is an ideal of ZXZ.

(d) Let F be a field. Can F have any zero divisors? Prove or disprove your answer.

No. Suppose ab = 0 where $a, b \in F$. Casel: If $a \neq 0$, then a' = exists in Fand thus, a'ab = a'0. Then b = 0, Then b = 0, $ab \neq 0$, then b' = exists in Fcases: If $b \neq 0$, then b' = exists in Fand thus, abb' = 0.

Thus, now we must have either a=0 or b=0. So, F has no Zero divisors.

- 2. [10 points] PICK ONE OF THE FOLLOWING:
- A) Let R be a commutative ring with $1 \neq 0$, and let P an ideal of R with $P \neq R$. Prove that P is a prime ideal of R if and only if R/P is an integral domain.
- B) Let R be a ring with identity $1 \neq 0$. Prove the following: (a) Let I be an ideal of R. Then I = R if and only if I contains a unit of R. (b) Further suppose that R is commutative. Then, R is a field if the only ideals of R are $\{0\}$ and R.

These were done in class. See study guide & notes.

A) See 2/12/20 notes B) See 2/3/20 notes

- 3. [10 each] PICK $\underline{\rm ONE}$ OF THE FOLLOWING:
- A) Let R be a ring and I and J be ideals of R. Let

$$I+J=\{a+b\mid a\in I \text{ and } b\in J\}.$$

Prove that I + J is an ideal of R.

- B) Let $\phi: R \to S$ be a ring homomorphism where R and S are integral domains. Prove: (i) If I is an ideal of S, then $\phi^{-1}(I)$ is an ideal of R, and (ii) If P is a prime ideal of S, then $\phi^{-1}(P)$ is a prime ideal of R. \square
- ① Since I and J are ideals, $0 \in I$ and $0 \in J$. Hence $0 = 0 + 0 \in I + J$.
- ② Let $x,y \in I+J$. Then x = a,+b, and $y = a_z+b_z$ where $a_i,a_i \in I$ and $b_i,b_i \in J$. Then, $a_i-a_i \in I$ and $b_i-b_i \in J$. Then, $a_i-a_i \in I$ and J are ideals.

Since I and Jane 10.

Thus,
$$x-y=(a_1-a_2)+(b_1-b_2)\in I+J,$$

$$x-y=(a_1-a_2)+(b_1-b_2)$$

3 Let repand zettj,

Then z= itj where iet and set.

Then z= it where iet and iret,

Since I is an ideal, riet and jret,

Since I is an ideal, riet and

Since I is an ideal of R.

As D, Q, and @ I is an ideal of R.

- 3. [10 each] PICK $\underline{\text{ONE}}$ OF THE FOLLOWING:
- A) Let R be a ring and I and J be ideals of R. Let

$$I+J=\{a+b\mid a\in I \text{ and } b\in J\}.$$

Prove that I + J is an ideal of R.

B) Let $\phi: R \to S$ be a ring homomorphism where R and S are integral domains. Prove: (i) If I is an ideal of S, then $\phi^{-1}(I)$ is an ideal of R, and

domains. Prove: (i) If I is an ideal of S, then $\phi^{-1}(I)$ is an ideal of R, and (ii) If P is a prime ideal of S, then $\phi^{-1}(P)$ is a prime ideal of R. The same $\varphi^{-1}(P) \neq R$.

B

(i)
$$\varphi^{T}(I) = \{ r \in R | \varphi(r) \in I \}$$
.

Since $\varphi(o) = 0 \in I$ we have that $0 \in \varphi^{T}(I)$.

Let $a, b \in \varphi^{T}(I)$. Then $\varphi(a), \varphi(b) \in I$.

Since I is an ideal, $\varphi(a) - \varphi(b) \in I$.

Since I is an ideal, $\varphi(a) - \varphi(b) \in I$.

So, $\varphi(a-b) \in I$. Thus, $a-b \in \varphi^{T}(I)$.

So, $\varphi(a-b) \in I$. Thus, $a-b \in \varphi^{T}(I)$.

Let $c \in \varphi^{T}(I)$ and $c \in R$. Since $c \in \varphi^{T}(I)$.

We get that $\varphi(c) \in I$ and $\varphi(c) \in I$.

Thus, $\varphi(c) \in I$ and $\varphi(c) \in I$.

Thus, $\varphi(c) \in I$ and $\varphi(c) \in I$.

Thus, $\varphi^{T}(I)$ and $\varphi(c) \in I$.

Thus, $\varphi^{T}(I)$ is an ideal of R .

Thus, $\varphi^{T}(I)$

- 4. [10 points] PICK ONE OF THE FOLLOWING:
- A) Let $\phi: F \to R$ be a ring homomorphism where F is a field and R is a ring. Prove: (i) The kernel $\ker(\phi)$ is an ideal of F, and (ii) If ϕ is onto and $R \neq \{0\}$ then ϕ is an isomorphism.
- B) Let R and S be commutative rings with identities 1_R and 1_S respectively. (a) If A is an ideal of R and B is an ideal of S, show that $A \times B$ is an ideal of $R \times S$. (b) Show that every ideal I or $R \times S$ has the form $I = A \times B$ where A is an ideal of R and R is an ideal of R. [Hint for b: Define $R = \{a \in R \mid (a,0) \in I\}$ and $R = \{b \in S \mid (0,b) \in I\}$.

(i) $\phi(0)=0$, so $0 \in \ker(\varphi)$. Let $x,y \in \text{ker}(\varphi)$. Then $\varphi(x) = \varphi(y) = 0$. So, $\varphi(x-y) = \varphi(x) - \varphi(y) = 0 - 0 = 0$ Let rEF and ZEKer(p). Then q(Z)=0, so, x-y = ker (4). $\varphi(rz) = \varphi(r)\varphi(z) = \varphi(r), 0 = 0$ φ(zr)= φ(z)φ(r)= 0 φ(r)=0 so, rzeher(q) and zreher(q). Thus, ker(q) is an ideal of F. (ii) Since her(q) is an ideal of F and

Since $\ker(\varphi)$ is an ideal of Fand Fix a field, $\exp(\varphi) = \{0\}$ or $\ker(\varphi) = \{0\}$. Fix a field, $\exp(\varphi) \neq \{0\}$. Why? If so, then We know $\ker(\varphi) \neq \{0\}$. Why? If so, then $\exp(\varphi) = \{0\}$ since $\varphi(x) = 0$ $\forall x \in \{0\}$. But $\exp(\varphi) = \{0\}$ since $\varphi(x) = 0$ onto, $\exp(\varphi) = \{0\}$ since $\varphi(x) = \{0\}$ and $\exp(\varphi) = \{0\}$ since $\varphi(x) = \{0\}$ and $\exp(\varphi) = \{0\}$ since $\varphi(x) = \{0\}$ and $\exp(\varphi) = \{0\}$ since $\varphi(x) = \{0\}$ and

- 4. [10 points] PICK $\underline{\text{ONE}}$ OF THE FOLLOWING:
- A) Let $\phi: F \to R$ be a ring homomorphism where F is a field and R is a ring. Prove: (i) The kernel $\ker(\phi)$ is an ideal of F, and (ii) If ϕ is onto and $R \neq \{0\}$ then ϕ is an isomorphism.
- B) Let R and S be commutative rings with identities 1_R and 1_S respectively. (a) If A is an ideal of R and B is an ideal of S, show that $A \times B$ is an ideal of $R \times S$. (b) Show that every ideal I or $R \times S$ has the form $I = A \times B$ where A is an ideal of R and R is an ideal of R. [Hint for b: Define $R \in R \mid (a,0) \in I$] and $R \in R \mid (a,0) \in I$ and $R \in R \mid (a,0) \in I$].

(a). Since A and B are ideals, OR EA and Os EB. Let $x,y \in A \times B$. Then $x = (a_1,b_1)$ and $y = (a_2,b_2)$ are in $A \times B$. Since A is an ideal, $a_1 - a_2 \in A$ since B is an ideal, $b_1 - b_2 \in B$. [of B] Hence $(O_r, O_s) \in A \times B$. So, X-y=(a,-az,b,-bz) ∈ AXB, . Let me RXS and ZEAXB, Then m=(Cs) and Z = (a,b) where $r \in R$, $s \in S$, $a \in A$, $b \in B$.

Since A is an ideal S be B and $b \in B$.

Since B is an ideal S be B and B. Thus, $mz = (r,s)(a,b) = (ra,sb) \in A \times B$ and $ZM = (a,b)(r,s) = (ar,bs) \in A \times B$. Thus, AXB is an ideal of RXS.

4. [10 points] PICK ONE OF THE FOLLOWING:

A) Let $\phi: F \to R$ be a ring homomorphism where F is a field and R is a ring. Prove: (i) The kernel $\ker(\phi)$ is an ideal of F, and (ii) If ϕ is onto and $R \neq \{0\}$ then ϕ is an isomorphism.

B) Let R and S be commutative rings with identities 1_R and 1_S respectively. (a) If A is an ideal of R and B is an ideal of S, show that $A \times B$ is an ideal of $R \times S$. (b) Show that every ideal I of $R \times S$ has the form $I = A \times B$ where A is an ideal of R and R is an ideal of R. [Hint for b: Define $R \in R$ is an ideal of R and $R \in R$ is an ideal of R.]

(b) Let I be an ideal of RXS.
Let
$$A = \{a \in R \mid (a, 0) \in I\}$$
 and $\beta = \{b \in S \mid (0, b) \in I\}$.

Claim: I = A XB

AxB \subseteq II: Let $(a,b) \in A \times B$. Then $(a,o) \in I$ and $(a,b) \in I$. So, $(a,b) = (a,o) + (b,b) \in I$ since I is an ideal.

If $(a,b) \in I$, $(a,b) \in I$ where $a \in K$, $b \in S$.

If $(a,b) \in I$ is an ideal $(a,o) = (a,b) \in I$.

Then since I is an ideal $(a,o) = (a,b) \in I$.

Then since I is an ideal $(a,o) = (a,b) \in I$.

Then since I is an ideal $(a,o) = (a,b) \in I$.

Thus, $(a,b) \in K \times S$ we get $(a,b) \in I$.

Thus, $(a,b) \in I$.

Thus, $(a,b) \in I$.

Claim

(next page)

Claim: A is an ideal of R

- . (0,0) EI since I is an ideal, hence $0 \in A = \{a \in R \mid (a,0) \in I\}$.
- . Suppose a,,a, ∈ A. Then (a,,0), (a,,0) ∈ I, So, $(a_{1},0)-(a_{2},0)=(a_{1}-a_{2},0)$ is in I, So, a,-a2 ∈ A.
- . Let a EA and rek.

Since I is an ideal of RXS we get Then $(a, 0) \in I$.

 $(ra,0)=(r,0)(q,0) \in I.$ in RXS in I

 $(\alpha r, 0) = (\alpha, 0)(r, 0) \in \mathcal{I},$

Therefore by The above A is an ideal

Claim: Bis an ideal of 5

Same proof as above claim.

Rithing This all together proves