Math 5402 - Test 1

Note: Let R and S be rings. Recall that addition and multiplication in
R x S is given by (a,b) + (¢,d) = (a +¢,b+d) and (a, b)(c, d) = (ac, bd).
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1. [32 points - 8 each]

(a) Prove-that ¢ : Z — ZXZ given by ¢(z) = (2z, z) aring homomorphism. P
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(b) Is {0,4,8} a prime ideal of Z;, ? Why or why not? (You may assume
that it is an ideal.)
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(c) Let I = {(—a,3b)|a,b€ Z}. Prove that I an idcal of Z x Z.
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(d) Let F be a ﬁeld C
. Can F hav y ivi \ ve'y
. e any zero divisors? Prove or disprove your
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2. [10 points] PICK ONE OF THE FOLLOWING:

A) Let R be a commutative ring with 1 # 0, and let P an ideal of R with
P # R. Prove that P is a prime ideal of R if and only if R/P is an integral
domain.

B) Let R be a ring with identity 1 # 0. Prove the following: (a) Let I be
an ideal of R. Then I = R if and only if I contains a unit of R. (b) Further
suppose that R is commutative. Then, R is a field if the only ideals of R are
{0} and R.
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3. [10 each] PICK ONE OF THE FOLLOWING:

A) Let R be a ring and I and J be ideals of R. Let
I+J={a+blaclandbe J}.
Prove that I + J is an ideal of R.

B) Let ¢ : R — S be a ring homomorphism where R and S are integral
domains. Prove: (i) If I is an ideal of S, then ¢~!(/) is an ideal of R, and P + R]
(ii) If P is a prime ideal of S, then ¢~!(P) is a prime ideal of R. CA Cfume cp ( )
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3. [10 each] PICK ONE OF THE FOLLOWING:

A) Let R be aring and I and J be ideals of R. Let
I+J={a+blacTandbe J}.

Prove that I + J is an ideal of R.

B) Let ¢ : R — S be a ring homomorphism where R and S are integral

domains. Prove: (i) If I is an ideal of S, then ¢~!(/) is an ideal of R, and - E—)
(i) If P is a prime ideal of .S, then ¢~*(P) is a prime ideal of R. [ Assume < ( P) :}l: l ‘
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4. [10 points] PICK ONE OF THE FOLLOWING:

A) Let ¢ : F — R be a ring homomorphism where F' is a field and R is a
ring. Prove: (i) The kernel ker(¢) is an ideal of F, and (ii) If ¢ is onto and
R # {0} then ¢ is an isomorphism.

B) Let R and S be commutative rings with identities 1z and 1¢ respectively.
(a) If A is an ideal of R and B is an ideal of S, show that A x B is an ideal
of R x S. (b) Show that every ideal J or R x S has the form I = A x B
where A is an ideal of R and B is an ideal of S. [Hint for b: Define A =
{a€eR|(a,0)€ I} and B={be S| (0,b) € I}.
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4. [10 points] PICK ONE OF THE FOLLOWING:

A) Let ¢ : F — R be a ring homomorphism where F' is a field and R is a
ring. Prove: (i) The kernel ker(¢) is an idecal of F, and (ii) If ¢ is onto and
R # {0} then ¢ is an isomorphism.

B) Let R and S be commutative rings with identitics 1z and 1g respectively.
(a) If A is an idcal of R and B is an ideal of S, show that A x B is an idecal
of R x S. (b) Show that every ideal I or R x S has the form I = A x B
where A is an ideal of R and B is an ideal of S. [Hint for b: Define A =
{a€eR|(a,0) €I} and B={be S| (0,b) € I}.
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4. [10 points] PICK ONE OF THE FOLLOWING:

A) Let ¢ : F — R be a ring homomorphism where F is a field and R is a
ring. Prove: (i) The kernel ker(¢) is an ideal of F, and (ii) If ¢ is onto and
R 3 {0} then ¢ is an isomorphism.

B) Let R and S be commutative rings with identities 1g and 15 respectively.
(a) If A is an ideal of R and B is an ideal of S, show that A x B is an ideal
of R x S. (b) Show that every ideal I of R x S has the form I = A x B
where A is an ideal of R and B is an ideal of S. [Hint for b: Define A =

{a € R|(a,00€I}and B={be S| (0,b) € I}.
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