Math 5402 5/6/20

• One 8.5 x 11 sheet

(one-sided) notes. Just

than statements / deba.

No proofs or calculations.

Galois group of finite fields

Galois group of finite fields

For is the splitting field of

the sepanable polynomial xp-X

the sepanable polynomial xp-X

over $\mathbb{F}_p = \mathbb{Z}_p$. So, \mathbb{F}_p^n is Galois over \mathbb{F}_p^n . Therefore, $|Gal(\mathbb{F}_p^n/\mathbb{F}_p)| = |Aut(\mathbb{F}_p^n/\mathbb{F}_p)|$ $= [\mathbb{F}_p^n:\mathbb{F}_p].$ claim: [Fpn: Fp]=n (P92) Since For and For are finite, there is a basis for For over For [worst case the basis is all of Fpn. Suppose B1, B2, ..., Bk is a basis for Fpn over Fp. That is, For each ai has p choices)

So,

P = | For | = P

Representation of this set has pherents Thus, k=n. [claim] Thus Gal (Fpn/Fp) = n

Consider the Frobenius automorphism (P93) $\mathcal{T}_{p}: \mathbb{F}_{p^n} \longrightarrow \mathbb{F}_{p^n} \text{ where } \mathcal{T}_{p}(x) = x^p.$ We proved that op is an isomorphism. (13,5) Also, if $f \in \mathbb{F}_p$, then f = f. Why? 0°=0. If f≠0, then f∈ Fpx and $\mathbb{F}_{\rho}^{\times} = \mathbb{Z}_{\rho}^{\times}$ is a group under mult, So, $f^{p-1}=T$. So, $f^p=f$. of size p-1. So, $\Gamma_p(f) = f^p = f$ for all $f \in \mathbb{F}_p$. Thus, TPE Gal (Fpr/Fp). We know $X^{p} = X$ for all $X \in \mathbb{F}_{p^{1}}$.

We know $X^{p} = X$ for all $X \in \mathbb{F}_{p^{1}}$.

If precisely the roots of $X^{p} - X = 0$ (13.5)

So, the order of $\mathbb{F}_{p^{1}}$ in $\mathbb{F}_{p^{1}}$ ($\mathbb{F}_{p^{1}}$)

is at most \mathbb{N} . (Since $\mathbb{F}_{p^{1}}$ = identity)

We cannot have op = identity (pg4 for 1 < k < n since them $x^{p^{R}} - x = 0$ for all $x \in \mathbb{F}_{p^{n}}$. But x x x has no multiple roots [its derivative is -1]. So it has at most proots in Fp1. Not enough roots to make all of Fpn, Therefore, of has order n and Gal (Fpr/Fp) = < Op> $= \{1, \sigma_{\rho}, \sigma_{\rho}, \dots, \sigma_{\rho}^{\rho-1}\}$ END

X2+X+T is irreducible over Zz. $\mathbb{F}_{q} = \mathbb{Z}_{2}(x)/(x+x+1) = \mathbb{Z}_{2}(x)/T$ $= \{ 5 + T, T + T, x + T, (T+x) + T \}$ $(x^{2}+x+T)+T=\overline{0}+T$ $Gal(F_4/F_2) = \langle \sigma_2 \rangle = \{i, \sigma_2\}$ $(1 + 1)^{2} = x^{2} + I = (x + 1) + 1$ $(2) \leftarrow (3 + 1)^{2} + I = (1 + 2) + 1 = 1 + 2 + 2 + 1 = 1 + 2 + 1 + 1 = 1 + 2 + 1 = 1$ > (T+x)+I, (T+x)+I -> (T+X)+) (1+x)+I)

114,2 Thm: The extension K/F is Galois iff K is the splitting field of some seperable polynomial over F. + means: Aut(K/F) = [K:F] separable: no repeated/ multiple roots

Ex! Find Galois group for

(P97)

we just need to calculate
$$T(S_6)$$
 which must be a root of ming, $T(S_6)$ which must be a root of ming, $T(S_6)$ $T(S_6$

(pg8)

If of 6 bal (a (S6) /a)