Math 5402 3/23/20 Week 10

4
1

Spring Break is still on! 13.1 continued Def: Let K be an d, d2 d3 extension field of a field F. Let $d_1, d_2, \dots, d_n \in K$. The smallest subhield of K containing both F and the elements di, dzj..., dn is called the field generated by X1,..., In over F F(d1,...,dn) = 1 E and denoted by Fis a field $F(\alpha_1, \alpha_2, ..., \alpha_n)$. F = E, d,,,,,d,EE

If
$$K = F(x)$$
, then K is called a simple extension of F ,

Theorem: Let F be a field and let $p(x) \in F(x)$ be a non-constant irreducible polynomial, Suppose K irreducible polynomial, Suppose K is an extension field of F containing a root of p(x). Then

$$F(x) \cong F(x)/(p(x))$$

$$F(x) = \frac{pf}{ring}$$

$$\varphi: F(x)$$

$$\varphi:$$

pf: Consider the ring homomorphism

P: F[x] -> F(x)

P(f(x)) = f(x)

You can check this is a ring hom.

Ex: P(x+x) = x²+x

P:
$$F(x) \rightarrow F(x)$$
, $\varphi(f(x)) = f(x)$

Note that φ maps F to F , ic $\varphi(f) = f$

Since $\varphi(p(x)) = p(x) = O$.

For all $f \in F$.

So, $p(x) \in \ker(\varphi)$.

We can now define $\psi: F(x)/(p(x)) \longrightarrow F(\alpha)$

by $\psi[f(x) + (p(x))] = \varphi(f(x)) = f(\alpha)$
 $\psi: F(x)/(p(x)) \longrightarrow F(\alpha)$

Then, $f(x) - g(x) \in (p(x))$, So, $f(x) - g(x) = p(x)h(x)$.

So, $\psi[f(x) + (p(x))] = f(\alpha) = g(\alpha) + p(\alpha)h(\alpha)$
 $\psi: F(x)/(p(x)) = f(\alpha) = g(\alpha)$
 $\psi: F(x)/(p(x)) = g(\alpha$

Since p(x) is irreducible in F(x), (pgy)We know that (p(x)) is maximal.

So, F[x]/(p(x)) is a field.

We know ker (+) is an ideal of the field F[x]/(p(x)) so ker $(+) = \{0 + (p(x))\}$ or ker (+) = F(x)/(p(x)).

Since $\{+\}$ is not the zero map

we know ker $(+) \neq F(x)/(\rho(x))$, So, $\ker(+) = \{0 + (\rho(x))\}$.

So, \forall is one-to-one.

Let's now show \forall is onto $F(\alpha)$.

[for ex $4(1+(p(x))) = 1 \neq 0$]

f(x) + (b(x)) X+(p(x1) $F[\times]/(p(x)) \stackrel{\sim}{=} (F[\times]/(p(x)])$ Note, (1st isomorphism field RER/803 So, im(4) is a subfield of F(x). $F \leq im(Y)$: Let $f \in F$. Then, f(f + (p(x))) = f. $\angle eim(+): +(x + (p(x))) = \angle.$

F[x)/(p(x))

Feim(ψ): Let $f \in F$. Then, f(f + (p(x))) = K. $K \in Im(\psi)$: f(X) + (p(x)) = K. $K \in Im(\psi)$: f(X) + (p(x)) = K. $K \in Im(\psi)$: f(X) + (p(x)) = K.

So, since f(X) is the smallest field $f \in Im(\psi)$. $f(X) = Im(\psi)$: $f(X) = Im(\psi)$:

Using the same objects as in the previous theorem, Suppose p(x) has degree n. Let T = (p(x)).for F[X]/I ال کر کرید رک over F

$$p(x) = x^{2} = 0$$

$$Q(\sqrt{z}) = 0$$

$$Q(\sqrt{z}) = \sqrt{2}$$

$$Q(\sqrt{z$$

Ex: F= Q

 $I = (X - \zeta)$

Thm 8 from book (pf in book) (pg.8) Let q: F -> F'be an isomorphism of fields. Let p(x) EF[x] is irreducible and p'(x) EF'[x] is obtained by applying e to the coefficients of p(x). Let & be a coot of p(x) [in some extension of F) and let B be a root of p'(x) Lin Some extension of F/J. Then there is an isomorphism $\sigma: F(\alpha) \longrightarrow F'(\beta)$ where $\sigma(d) = \beta$ and σ extends φ , that is $\sigma(f) = \varphi(f)$ for all $f \in F$. $T: F(x) \xrightarrow{\cong} F'(\beta)$ [Special case: $F = F', \varphi(f) = f \forall f \in F$ 9: F =) F p(x) = p'(x) and $d_{1}B$ are two roots of p(x) Then $F(\chi) \cong F(\beta)$. $p(x) \mapsto p'(x)$ $\sigma: F(\alpha) \xrightarrow{\cong} F(\beta)$