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PL
I will use your calstatela

email to mass email the

class announcements .

Let me know if you

want me
to use a

different email
.



HW 1 Topic

setsandprobak.li/&paes%Def:-
A set is a collection

of objects /elements .

If × is an
element of

a

set 5 then we
write xc

read :
"

✗ is ins
"

If ✗ is not an element
of

a set S
then we write x¢5_

read :

"
✗ is not

in 5
"

If 5 has a finite

number of
elements then

the size
of 5 is denoted

by 151
.



EI: Let's make a set ⑤
that models rolling a six -

- sided die .

Let

5={1,33%5,6} ←possibleoutcomes
of rolling

a
6- sided

die

we have 151=6 later we

3 ES will call

s the

845sina.ie#rderdesn-matEa
{1,2/34,56} = {

2
,
6,5, I , 3,4}

'

÷÷÷:÷:.*⇒
{ 1,1 , 5 } is

not a set



PY

Generalwaytomakeasetsdfq.im?Iof conditions the

elements in | elements must satisfy}to be in
the set

%r"where"@a" such that
"

somepeo"use :
instead

of 1



É Let's make a set that PK
models rolling two 6- sided

dice , one green
and one red .

S = { ( g , r) / 9=1,334,56r=l
,
2,3, 4,56
}

={ ( 1,11, ( 1,21, ( 1,31, 11,41,
( 1,534,61,

(2,11 , ( 2,21 ,
( 2,31 , (2,41,

(351,1363

( 3,1 ) , (3,2
) , (3,31,

( 3,41, ( 3,51,(
3,61
,

(4) 1) , ( 4,21,
( 4,31, ( 4,41,

14,511461,

(5,11 , (5,21 ,
( 5,31, (

5,41 , (5,516,61,

(6,1 ) , ( 6,21 ,
( 6,31, (6)

4116,51,(6,61}

TÉÉyreen
die =3

red die
= 4

(4,3 ) ← represents green
die -_ 4

red die =3

Note 151=36



Def: Let A and B be :[
sets .

We say that
A

is a subset of
B

if every
element of

A

is also an
element

of B .

We write
AEB if

A is a
subset

of B.

Nolet

B songpeople
write

ACB



EI. Consider rolling a 6 - sided die
. P¥

5={1,213,4-5,6} ←%ma
s

E={ 1
,
3,5 }

Then E c- 5 .

"I • 6

Later we will
call E an

event .

We will say
that E

" occured
" if when we

roll

the die
either 1,3,

or
5

Comes up .



¥ Suppose we roll two PLL
6 - sided dice

,
one green

and

one
red .

s={G,r)1¥¥;%¥¥-€%1%[
Let's make

a
subset where

the

dice
add up

to 7 .

E- { ( 1,61 ,
12,51 , ( 3,41 ,

( 4,31 ,cs.zl.ch#
Here EES

.

Later we
will think

of E as

the event
that the

two dice

add up
to 7 .

Note IE
1=6

151--36



EXI Suppose we flip
a coin p§(

three times in
a row

and

record each time
if we get

H= heads or 1- = tails .

Let's make a sample space
to

model this
experiment . samp[space

means
all

S={ (1-1,1-1,1-1) , ( H, #
Tb possible

outcomes

( H , T, H ) , (
H
,
T
,
T )
,
( T, H, H ) ,

(T, H ,T ) , (
T
,
T, Hl ,

(IIT ) }

Here ( H,
T
,
H ) means :

1st flip
= It

2nd flip
= T

3rd flip
= Itw,ypa,µn,,yµµyn#
order matters

.



( same example continued . . . ) PK

E={ (H.IT ) , (T.H.tl,
(IT , HI}

This E would represent
the

event that
exactly one

H= head

occurred in the
three flips

.

Note

151=8
IE / =3
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I

No
Tests will be taken

on

campus during
class time

unless the
school stays

online and we
don'tg.m,y,,

No
I put

old student
notes

on+hewebsiteaHh!schedule in case
you

want to get an
idea of

what we will
do in the

class



¥De Suppose S is some

set and suppose AES .

The complement of
A ins

is defined to
be

A- ={x|xeSandx¢A}-
read A- consists

of all ✗

Where ✗ is in
5 and

✗ is not in
A.

S notations
/ / for A- are

"" the
-

A
's



Ed: Let

5 = { 1,2 , 3,4 , 5,6}

A = { 4,2 }

A- = {

A A-

| ! ?

4. ? 6.



DI: Let A and B be sets . P
The intersection of A and B is

An B = { ✗ / ✗EA and ✗EB}

-AÉitÉ
✗ where ✗ is in

A and

B
✗ is in B

A

AMB

The union
of A and B is

AUB = { ✗ / ✗ c- A or ✗ EB}

rAÉitfÉre
✗ is in

A or ✗
is in

B.

itInmath
)"

or
"
can mean both AUB



PscDe± The emptyset

is the set with no

elements .

It's denoted by ¢ or { } .

-



EI Let 5 be the sample space 1¥
we made

for flipping a coin three

times in a row .

S={ ( H, H , Hl, CH.H.tl ,
(H ,T, HI ,

CHIH,

(T, H , Hl ,
11TH.tl , (IT,

HI ,
(IIT )}

Let

A={ (H.H.tl , ( H , H ,
Hl
,
CIIHB

B={ ( t.IT/,CTsDH1,CH,H,Hl,CIHsT1
}

c={ CHI, HUH ,T.tl ,
CIH , HI }

Then

AUB __ { ( H , H ,T ) , ( H ,
H
,
Hl
,
( IT,HI ,

( IIT )
,

( T , H ,T )}

AAB
-

- { ( H , H, Hl , (IT, HI}
Anc -_ ¢ Bnc __ ¢



¥s

!"""÷"%(A)¥1T

÷¥"÷÷÷



PILDef:_ We say that
two

sets X and Y are

disjoint if ✗ nY=¢

-

⇐ In the previous
example,

• Anc = ¢
so

A and
C were

disjoint

• Bnc =p
so B and C

were

disjoint

-



De Let A
,
,

Az
, . . ,

An P
be sets .

Define

ÑA
;
= A ,nA< A.

• MAN

i. =L

={ ✗ / ✗ c- A ,
and ✗ c- Az

and }
• • .
and ✗ C- An

¥ÉtaÉ
the Ai 's

in

U A
,

= A , VAN
. - UAN

" " ={×/xisinatoof}the sets
Ai ,
Az ,

. .
.,
An

put all
the Ai

,
Anna, An

together into
one set .



E Let PIL
5={1,334,547,8/9,191412}P
A ,={ 1,43 } represent

Az={ 3,4 ,s }
"4={8-3}

rolling
a 12

-

sided

Az={ 5,6174 } die

dodecahedr#Then
,

¥ ,Ai=ANAzVAsUA4 s

={ " "" ""
"""

ANAWAY !={ 1,213,4198 }
"8•§.ÑAi=A,hA< AA}AA4

E- I
= ¢

9. • to
•

•

"

12
A ,nAzAAy={ 3}



De_f: Suppose we have an infinite p!
number of

sets Ai
,
Az
,
As
,
. . .

Define

re

nAi={ ✗ / ✗
is in everyone}

of the Ai

e-=L

✗

UAi={ ✗ / ✗
is in

atleast one}
of the Ai

e- =L



EI: Let zis the set P⑤
5=21 ←

ofint!
= { . . . , -4 , -3,

-2
,
-1,0, 1,2/3,4,

. . .}

For i > 1
,

define

Ai={ n /
his an

integer}
- isnsi

= { -i , . . . , go.si
}

For example ,

A ,={ -1,0 ,
I }

A = { -2, -1,0,
1,2 }

A) = { -3 , -2 , -1,91 ,
2,3 }

Ay = {
-4
,
-3
,

-2
,
-1,0, 1,2 ,

3,4 }

✗

Then ,
Ai={ - i. 0,1}

Ai=z



DEI: Let A and B be P⑤
two sets .

The Cartesian

predict of A and B is

a is in
A

AxB= { (a) b) Ibis in B
}

re¥ Feinstein
(a)b) where

a c- A
and BEB

"É=€
B= { 1,2

,
3,4 }

Then ,

AxB={ (H , 1) , (
H
,

21
,
CH , 31,

(A) 41 ,

( T, 11 ,
(T, 21 ,

(I 31,
CT
,
41 }

A- ✗A={ ( Hdt
)
,
CHIBA, HI, CITI }

13×13={(1,1411/21,431,441,143
142)/1431,12/41,1}, 11 ,

(3,21 ,

C. 3,31, 13,41,
(4,11/14,2)/(4,31/4,4)}
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I
I sent out an email

about office hours and

also posted it on

canvas under
" Office Hours

"

(
Email / canvas has

Zoom link )

Monday : 1:45 - 2:45

(will become in person
when we go

back

in Simpson Tower
317 )

Tuesday ;
12:30 - 2:00

(These will stay
online )



¥

Def:_ Let A and B be sets
.

A function f from A to B
,

notated f- : A-→ B , is

a rule that assigns to each

element of A a
distinct

element of
B

B
A

0€



E Let Poe

5- { ( H.H.lt/,CH,IH1,CH,H,TbCH,It1,
(T, H, Hl , (T,

T
,
Hl
,
CIH.tl , (IIT )}

be the sample space of flipping a

coin 3 times .

Let f :S → IR [ IR
means set

of real numbers
]

be the number
of heads that

occur.

5

I""*
>

( H
,
T, H )

•

÷.÷:÷⇐• .(T
,
H, Hl

•

a- 1

( T
,
T
,
H ) •

"



EXampleofmakingaprob-abiityspaep.gg
Suppose we want to model

the

experiment of throwing / rolling

one 4- side die .

Sample space

S = { 1,2 , 3,4 }
←aupossoutcomes

of

rolling
the die

Omega☐
L

r = § , { I }
,

{ 2 }
,

{ 3 }
,
{ 4 }

{ 1,2},
{ 1,3 }, { 1,4

}
,
{ 2,3 } ,

{ 2,4 } , { 3,4 },
{ 1,2, 3 } ,

{ 1,34 } ,
{ 1 , 3,43 ,

{ 2,34}

r is

i{
1,2, 3,4

} } ← called
the

set of
events

the sets

that we of subsets
of

man.
# IF:÷÷÷÷÷:÷#usually make

R s with
special

probability
of subsets of S .



What do these events mean ? P⑤
§←representsthatÉ

number came up on
the die

{ 3 } ←
represents 3 came up

on
the die

{ 1,3 }
←

represents 1 or 3

came up
on
the die

{ 2,3 , 4}
←

represents
2 or

3 or
4

came up
on
the

die

represents
1 or

2

{ 1,213,4 }
←

or
3 or

4 came

up
on
the

die



Now we make the probability ②
function P :D→ IR

.

On a normal 4 - sided die

each side is equally

likely to
occur .

First step is to assign 4g;D;D
the probability of each

number / side individually .

p( { I } / = ¥ each side

is equally
p( {4)

= IT } likely

P({ 3} /
= f-

P({ 431=4
Now we

extend
P across

all the

events by doing
disjoint sums ,

for

example, define

P({ 1,3 } /
= p({ I} / + P(

{ 331=4+41
= Yz



What's the probability of
not P

rolling a 1 ?

P( { 33,4 } ) =P ( {
2 } )tP( {33 )tP(

{ 431

= f- + f- + f-
=

;
We define

P( ¢1 = 0

We have

P( { 1,2 , 3,4 } /
= P( { 13)tP(

{ 231

+ P( { 33
)tP({ 43 )

= f- +1-4+4+4=10



De_f: A probability consists P&
of two sets and a function

( 5,1 , P ) .

We call S
the

samp1espace_
of our experiment .

The elements
of 5 are

called outcomes.

I is a
set of subsets

of 5 .

The elements
of I are

called events.

P :r→ IR is a
function where for

each event
E from 1

we get a

probability
PCE ) of

the event
E

.

Furthermore,
the

following
axioms

must be
satisfied :

① S is an
event in
r

E

② If E is an
event in
h

the

then E- is an event in
r ] ? :p,?

- rent
of E

ins



:L③ If E
, , Ez , E3, • • •

is a finite or infinite

sequence of events in R ,

then WiFi is an
event

Andrey

tfin R .

gave
this

def in

④ 0<-1> (E)
It for

all events
E in h

the

1930£
⑤ PCs )= I

⑥ If Ei ,
Ez,
Ez , . . .

is a

finite or
infinite sequence

of

events in
I that

are pair - wise

disjoint [that
is ,
Ein -5=0 if ,=j]

then P( YE ;) -_
EPIE;)
i eniinJ②disjointmeansnooverlap



⇐Renata: A set r

satisfying ①
,
②
,
and ③

from the previous definition

is called a r-alg-eb.ro

or r
- field .

si5④

RemarkIfRisao-a1geb
one can

show
that

Cal GER
(b) If

E , ,

Ez
,
Ez , . .

.

are

in
r ,

then I. Ei

is in
A

PI: (a)
SEN by ① .

Thus , by ②
5=01 is

in R .



(b) Suppose Ei , Ez, Ez , . . . P
are in R .

By part ② , E)
E-
2)
É , . . .

are in I.

By part ③ , Ui Ei is in R
.

By part ②, YET is in r .

But ,

7. E-
= YET

☒
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How to construct a ☐fii←gi"P£probability is

Suppose S is a
finite sample space

that we want
to make into

a

I=poweffprobability space .

ofs

Defined to be the set
that contains

all the
subsets of

5 [ includes xD

For each element
we 5 pick

some
real number

nw
with

nw
is probability

OE hw
I / and define

P( {w} )
= nw
←ofwhappeni&

At the same
time pick

these

numbers
so
that ES={ 1,2 ,

3,4 }

P({ I} /
= n

,

=L
,

g nw =
1.=nz=tp( {3} )=nz=

Yy

p( { 43 )=ny=
Yy

npnj-na.tn -1=1means sum
over

all w in 5



Now extend P to any set E PLL
in R .

Suppose E={ w , ,
wa
,
. . .,wn}

Define n

PCE / = EP( {Wi } )

define PCE ) to be the sum

of the probabilities
of

the elements of
E

If E = ,
define

P(4) = 0 .

theorem's. The
construction

above

creates a probability
space

( S ,R , P ) .

proof:_ I'll put
this proof on the

website next
to todays

notes .

☒



[ Suppose you have a six - PIL
- sided die labeled 1,2 , 3,4, 5,6

and through experimentation
you

noticed it was
a weighted die

and the probabilities
were roughly

notice

f- + £+5
+÷÷.☐ = 1

Let's make a probability
space .

Define S = { 1,2 ,
3,4 , 5,6 }

Define
I={ all subsets

of s }

9 = { ¢, { 13,123,933,143,553,963
,

{ 1,23, { 1,33,
• ooo

h=%Fs ooo ,
{1,2-34,563}



Define P : I → IR by PK
p( { 4 } ) = 416

p( { 131=48
P( { s } ) = 416

P( { 231=48
P({ 6 } ) =

318

P( {331=48

If E is an event
in R we

define P(E)
= E P( { w} )
WEE

and P(41=0 .

Note

PCs )=P({ B)
+ P({ 23)tP({

3} )

+ P({ 4 } /
+ PIES })tP(

{6 } )

=
481-48+48 tf

+ foot f-
=/

What is
the probability

of rolling

an
even

number ?

P({44,6} )
=P ({ 2} )tP({ 4

})tP({ 6 } )

FÉÉf rolling
= f- + + 3-

2 or 4 or 6 = 9/16=0.5625



What is the probability of rolling p⑤
1 or 6 ?

P( { 1,6 } ) = P(
{ 13 )tP( { 631

= E- + 3- = §

-



Dtv P
You can construct a probability

space when S is countably

infinite, ie
S is infinite and

You can list the
elements .

Suppose S={ w , ,
wz , Ws ,

Wy >
• • • }
P
infinitely

Defined to be the
set mmy

of all subsets
of S ,

ie

the power
set of 5 .

Define P( {we
} ) for each

WES

so
that

0£ P( {Wi
} ) I 1

and £P({Wi
} / =L .

e- =L

If C- is an
event define

PCE / =
EP({w } )
WEE

TheoremoThiswiHbeaprobabi¥yae_✓



NIKE PIL
Suppose (5,1 , P ) is a

Probability space
and S is finite .

Suppose each outcome w
in S

is eqvaHyw,eighHd_ ,
that is

P( {w } / =
for all win

5
.

If this is the case
,
its easy

to calculate the probability
of

an event
E.

Suppose C- = { we ,wz, . . . , Wn
} has

h elements .

Then ,

P(E) =P ( {
w

,
})tP({we } )t

. . .
+ Pawn })

= ¥ + ¥ + • • • + ¥1

= I,=I¥ .

So ,PCE1=Y!



Suppose we do the experiment PIL
of rolling two

6 - sided dice .

Suppose these
are normal dice

so

each side
has equal

chance of happening .

(a)b)←denoteaonand b on die
2

S={ ( 1,134,21
,
4,339,41 , ( 1,51,

Cl, 61,

( 2,11 ,
( 2,21 , (2,31 ,

(2,41 , (2,51,
( 2,61 ,

( 3,11 ,
( 3,21 , ( 3,31,

(3,41 , [ 3,51,
( 3,67,

( 4,11 , ( 4,21,
(4,31, (4,41,

(4,519,61,

( 5,11 , (
5,21, (

5,31
,
(541,1551 ,

(5,61 ,

(6,11, (
6,21, (6,31,

(6) 41 , (6,51 ,
16,61}

R={all subsets
of S }

Each outcome
is equally

likely .

We
have

151=36 .

So, P(
{ (a,b1} /

= ¥ for any
a,b ,

For example ,
p( { (

3,5131=156
pt

son
son

first
2nd

die
die



What is the probability that

the sum of the dice equals 7 ?
%L

Let E be the event that the

sum of the dice is 7
.

Then
,

C- = { (6,1 ) , (5,21g (4,3 ) ,
(3,4 ) ,

TT cz.si ,
( 1,61 }

6 on 1 on

die I die 2

61-1=7

Since every
outcome is equally

weighted

P(E) = t¥=¥=É
I 0.165
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PL
Hw

Wait to do problems 9 and 10vntilwefinishHW2topÉ



(HW I continued . . . ) PLL

Theorems Let ( S , D ,
P )

be a probability space .

Let E and F be events .

Then

① PCEI
= I - PCE )

5

② If
EEF, then

PCE / I
P( F) .

←s



§

③ PCEUF ) =P (E) + PCFI
- PCENF )

S
E F

EUF

④ If E and F are
dis"

§;÷?
ie EMF = ¢,

then prob .

We know S= EVE

S

and E nÉ=¢ .

So, I =P ( s )
= PCEVÉI =p

,

P(E) + PCÉ) .

taxiing axiom6☐ So
,
P

(e)
.



I'll post the proofs of ② PFL
and ③ under the notes

for the day on
the

website for those
interested .

☒

-

E Suppose we roll
two 12 - sided

dice .
[Each number on the die are

equally likely] . What is the
probability

that at least
one

of the dice

is 4,5, 6,7 ,
8,9 , 10,11 ,

or 12 ?

die 1 die 2
have atleast

Examples: ③ ⑦ } one
of

4- 12

①

① ① } doesn't
have

a 4- 12



PLf- { ( a. b) lab ¥.

¥ }

= { ( 1,11 , ( 5,91 , ( 10,111,
• • • }

Fief , ¥=s
Tie =/of

diez = ,
die 2=9 die 2=11 m1q!

So
, 151=12.12--122--144
Let E be the event that atleast

one of the dice
is either

-4,5 , 6,7 , 8,9 ,
10,11, or

12
. hÉ

E- { (4,41 , (6,11, ( 12,21,
111,121
,

!
. }

Too hard to count
E.

Lets count E which is the

event that neitheroftheydzi.CI
are 4,5 , 6,7 ,

8,9 , 10,11,
or

so
,
E- is the

event that both
dice

are in the range
1
,
2,3 .



So
, :[

E- = { ( 1,11, ( 1,21, ( 1,31 , ( 2,11 , ( 2,21 ,
( 2,31 , ( 3,11 , (3,21 ,

13,3 ) }

We have / E- 1=9 .

Since each outcome is equally

likely with usual 12 - sided dice

we have

p( E) = 1¥ = 4¥ = ÷

Thus
,

P(E) = I - PCE /
= 1- IT

is =¥☐
Thm:_PlÉl=tPK@ 20.9375J



HWc-CounHng& P
Probability

Basiccounlingprinciple
If r experiments

that are to
be

performed are such that the
first

one may
result in n

,
possible

outcomes ;
and if for

each of these

n , possible
outcomes,

there are nz

possible
outcomes for

the second

experiment ;
and if for each

of

the possible
outcomes

of the first

two experiments
there are ns possible

outcomes of the third
experiment ;

and if , • • • ,

then there are

nine . . .hr possible outcomes

for the r experiments .



Suppose we toss a coin Pg[
and then roll a 4 - sided die

.

How many possible outcomes are

there when we do this ?

• (HR ) N
,
• Nz

= 2.4$ 8

• (Tsl ) total
possible
outcomes

(1-13)n⇒÷⇐÷:
"

t
ne 4
outcomes÷:☐to tossing to rolling
a 4 - sided die



:LAnother way to represent this

means mean

H or T

-

1,2/3,4
m

1- 4T¥
-

2 4

2. 4 = 8 possibilities



EI. In California, a license %(
plate consists of one number 10h33

, , ",9 )

followed by three upper-case letters,

followed by 3 numbers .

The only exclusion
is that the

letters I ,
0
,
and Q are

not

used in spot 2 and spot 4
.

Examples are
5 AQZ

117

① BBC
222

How many possible license plates are
there ?

letter letter
not not

# I,9"Q letter
I,o,orQ # # #

TFTTTTT
m= 10 NEZ } nj-26ny-23ns-tenc.to

rifle

total possible license
plates :

10.23.26.23 . 10-10.10=137,540,0%1possible plates



IBirthdayParadox@Svpp.sethere are N people in a

classroom .

What are the odds

that there are at least two

people with
the same birthday

( not year , just
day , like

two people

with Feb 7 birthdays ) ?

AmwPI"wi assume no one
has

a
Feb 29 leap year birthday

② We will assume
that each

day is equally likely .

Tobecontinved.IE





math47402.la#



⇐

On Monday we meet

at school .

The room
has been

moved tos
Different room
]

fromsylla!



#

Fromlastmonday-gBirthdayparadoxfsvpp.se
there are N people in a

classroom .

What are the odds

that there are at least two

people with
the same birthday

( not year , just
day , like

two people

with Feb 7 birthdays ) ?

Assumptions:

① We will assume
no one

has

a
Feb 29 leap year birthday

② We will assume
that each

day is equally likely .

③ Assume NE
365 because

if N > 365 the
probability is

1

or 100%



To analyze this let's think PCE

about the sample space size .

svppose.lv#-dateihgS={ (date 1
,
date 2 ,

date 3) / isaaendar
day

= { ( Feb 2, April
1
,
May 3) g

That TEF TE
1-

swann
'A÷¥¥¥?¥2t↳ex

of
z

3

havingÉÉ%¥z¥%÷z¥÷÷b ;Dh
So here when

N =3 .

365 •
365 •

365

IS / = ftp.s-sisilities-tf-pssibilities-t#pos-sibiies
for student

1 for student 2 fsofudent 3

= (36513



For general N, the size
of pay

the sample space is ( 3651N Go

365 .
365

• .
. .

•sÉii¥¥Ees••._s•J
Let E be the event

that there
are

at least two
students in the

classroom
with the same

birthday .

This is too hard
so we

instead

calculate E- which
is the

event

that there
are no_

students

with the
same

birthday .

365
• •

• - (N
- 1)

364 •

36s •

possibility

363

possibilities
¥+2

÷É¥
biE
student N

same day¥+=
can "- be

same
day

same day
or student

2 s%dl^through

P p student
p1=-4--3650 • 365-20• • •36s-(N



Thus, PIL

P( E) = I - P (E)
days are

equally
= I - ¥4
] since

likely

= |-(36sKs64¥%Y;n(36s-cn-
-

N=3_

P (E) = I
- 3°{;%Y}→

I 0.82
%



⇐

:÷÷:¥.%
:

☐
I 'll put

this

full table
in

the notes
online



④P97(⑨
g ayeendKingd

p
p



1¥Permutations
Suppose you

have n objects .

A permutation
of those n

objects

is an
ordered list

of the

n objects .

reaHth
tatius

of %}÷-eats
permutations

←
%;d÷;

abc
← ( a ,c , b)acts
← ( b , a ,

c)

b a C
← ( b , C)

a)

be a
← ( ya , b)

cab
← Cc , b ,

a)

ting
less waitin

6 permutations of a ,b , c.



PL
-

abc

actsµ÷ba-e.bac
bea

,

ca cab

gyp
Cba

p

choicesZ 1c
I



%L
There are n !

permutations of n objects .

I
2

^ ^ - l
choices

•
• •

c-hoiesochoicech-iesc-h.is
pp etc
can't

can't repeat
repeat¥e first

2

Choices

N ! = n ( n
- 1) (n -2)

• .
. (2) • (1)



É In how many ways P
can 5 people be sealed

5peop
in a row ?

'
Brian

exÉ-: clara

A C D E B

Egor
seat seat seat

seat seats
Donald

sea sea

sea

¥5

Answ 4
3 02 '

l

S
•

choices
°

choices choices choice

possibilities
=

Tag ¥ It

=
5 ! = 1200









































10

10

J

J

Q

Q

K

K

A

A

7

7

8

8

9

9

10

10

J

J

3

3

Q

Q

Q

Q

Q

Q

Q

Q

A

A

A

A

A

A

K

K

K

K

A
A

9
9

6
6

5
5

2
2

5

5

4

4

3

3

2

2

A

A

A

A

A

A

A

A

K

K

Q

Q

K

K

K

K

A

A

A

A

Q

Q

A

A

A

A

K

K

Q

Q

J

J

A

A

K

K

Q

Q

J

J

9

9

ROYAL FLUSH
A straight from a ten to an ace and all five cards of the same suit. In
poker suit does not matter and pots are split between equally strong
hands.

STRAIGHT FLUSH
Any straight with all five cards of the same suit.

FOUR OF A KIND
Any four cards of the same rank. If two players share the same Four
of a Kind, the fifth card will decide who wins the pot, the bigger card
the better.

FULL HOUSE
Any three cards of the same rank together with any two cards of the
same rank. Our example shows "Aces full of Kings" and it is a bigger
full house than "Kings full of Aces."

FLUSH
Any five cards of the same suit which are not consecutive. The highest
card of the five makes out the rank of the flush. Our example shows
an Ace-high flush.

STRAIGHT
Any five consecutive cards of different suits. The ace count as either
a high or a low card. Our example shows a Five-high straight, which
is the lowest possible straight.

THREE OF A KIND
Any three cards of the same rank. Our example shows three of a kind
in Aces with a King and a Queen as side cards, which is the best
possible three of a kind.

TWO PAIR
Any two cards of the same rank together with another two cards of
the same rank. Our example shows the best possible two-pair, Aces
and Kings. The highest pair of the two make out the rank of the two-
pair.

ONE PAIR
Any two cards of the same rank. Our example shows the best possible
one-pair hand.

HIGH CARD
Any hand that does not make up any of the above mentioned hands.
Our example shows the best possible High-card hand.

In poker, certain combinations of cards, or hands, outrank other hands, based on the
frequency with which these combinations appear.The player with the best poker hand
at the showdown wins the pot.

Visit selectabet.net for free chips at all the best online poker sites
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E Suppose you flip a coin 3 times in a

row .
Let ☒ :S→ IR be the random

variable

that counts the number
of heads that occur .

Here heads
is

"

success
" with probability p=t

and tails is
" failure

" with probability 1- p=I .

☒ is a binomial
random variable with

parameters p=tz
and n=3 .

n
R

s

f
"

(Hit /HI
.

• 3

(H ,T ,H
/ •¥÷:#( H ,T , -11 •2- 8- 1

(T ,T , Hl
.iii.iii.I
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