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ECP HARDWARE & SOFTWARE 
 
Turning on Hardware 
Turn on the ECP (model 205 or 210) control box by pushing the BLACK ON button. Make sure 
the mechanical system (weights/springs) is located in the correct position before you start your 
experiments. The ECP control box also has a RED OFF button. Use the RED OFF button to 
turn of the hardware in case of emergency. 
 
In Case of Emergency 
In case you experience a wildly moving mechanical system or when the mechanical system is 
vibrating strongly, make sure to push the RED OFF button on the front of the ECP control box. 
Turning of the ECP control box avoids damage to the experiment in case you specified the 
wrong control algorithm (unstable) and or reference signals that are too large. At all times, keep 
away from any moving parts. Make sure to push the RED OFF button also when someone is too 
close (less than 4 inches) to the experiment. 
 
Start ECP software 
Log in with your username and password and start the ECP software via the ECP icon on the 
desktop. Once ECP starts up, you will see a window similar to Figure 1. 
 

 
Figure 1: ECP main window 
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Open-loop versus Closed-loop experiments 
 Open-loop experiments (no feedback controller implemented) are used to study the 

dynamics of the uncontrolled mechanical system. Closed-loop experiments require the 
design of a feedback control algorithm that continuously monitors the encoder positions 
and computes control signals for the Servo Motor to control the forces applied to the 
mechanical system. In summary: 

 Open-loop experiments consist of applying input signals to the Servo Motor and 
measuring the outputs (encoder position of the different rigid bodies) of the mechanical 
system via Encoder 1 and/or 2. These experiments are done typically during your 1st and 
2nd week of your lab. 
 
 

 Closed-loop experiments consist of applying reference signals to the Servo Motor control 
loop and measuring the outputs (encoder position of the different rigid bodies) of the 
mechanical system.  

 
OPEN-LOOP EXPERIMENTS  
 
An open-loop experiment for the rectilinear or torsional system only requires the specification of 
a open loop trajectory. For the specification of an open-loop trajectory, please follow these steps: 
 
Setup of open-loop trajectory 

1. First turn of any closed-loop control algorithm by clicking the large Abort Control 
button in the main ECP window (see Figure 1). 

2. Select Command - Trajectory from the main menu bar (see Figure 1) to specify the test 
signal (called trajectory) for the servo Motor. A window similar to Figure 2 will open, 
allowing you to specify various test signals (trajectories). Typically we will use Step and 
Sinusoidal inputs.  
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Figure 2: Trajectory Configuration Window 
 

3. Select Step and click on Setup button to set up the step signal. A window similar to 
Figure 3 will open, allowing the specification of the Step Size, Dwell Time (how long is 
the step) and the number of repetitions. 
For an open-loop experiment, make sure to select Open-Loop Step. This causes the Step 
Size to be expressed in units of Volts, indicating an input signal on the Servo Motor in 
Volts. 

4. Close the Configure Step Trajectory window (Figure 3) by a click on the OK    
       button and close the Trajectory Configuration window (Figure 2) also by a click    
       on the OK button 

 
 
 
EXPERIMENTS & DATA ACQUISITION 
Performing experiments (open- and/or closed-loop) requires setting up data acquisition 
parameters to indicate which signal should be measured during the experiment. Subsequently the 
experiment must be run to upload the experimental data. These steps are described in the 
following. 
 
Set up data acquisition 
 
Make sure you have set up the correct (open-loop or closed-loop) experiment as described 
earlier. 

1. Select Data - Setup Data Acquisition from the main menu bar (See Figure 1) to    
      specify which signals to measure during your open-loop experiment. A window     
      similar to Figure 7 should appear. 
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Figure 7: Setup Data Acquisition Window 
 
 

 
 

2. Select the data you would like to measure by clicking on the following names: 
 

Encoder 1 Position = Output Position of Mass/Inertia 1 
Encoder 2 Position = Output Position of Mass/Inertia 2 
Encoder 3 Position = Output Position of Mass/Inertia 3 (typically NOT used) 
Control Effort = Input Signal to Servo Motor 
Commanded Position = Reference signal specified under Setup Trajectory (see above) 
Click on the Delete Item or Add Item buttons to respectively exclude or include that 
variable. 

3. Think which data you would like to measure when you do your experiment. If you do an 
openloop experiment, you probably only want to measure Control Effort, Encoder 1 
Position and/or Encoder 2 Position. For closed-loop experiments it is worthwhile to 
also measure the Commanded Position (reference) signal to inspect the steady-state 
error. Click  on OK button to 

      close the Setup Data Acquisition Window. 
 

Perform Experiment for Data Acquisition 
Make sure your have set up the data acquisition according to the steps described above. 
1. Select Utility - Zero Position from the main menu (see Figure 1) to reset all encoder values to 
0. This gives nice plots that will start at 0. You might have to do this several times in case of 
closedloop experiments. 
2. Select Command - Execute from the main menu to execute your experiment and a window 
similar to Figure 8 will open. 
 

 
Figure 8: Execute Trajectory Window 

 
Click on RUN button to start your experiment and data logging. 
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4. After the experiment ran successfully (no violent movement of mechanical system), an 
Upload Successful window similar to Figure 9 appears. 

 
 
 
 

 
Figure 9: Upload Successful window after experiments completed 

 
Click on O.K. to finish your experiment. If the Upload Successful window appears very quickly, 
the mechanical system might have hit the safety switches, causing the experiment to be 
terminated abruptly. In addition the control algorithm will be shut off and requires 
reimplementation. Try to reduce your step size or adjust the (PID) control parameters in case of 
closed-loop control to avoid this error message. 
 
PLOTTING & SAVING DATA 
 
Plotting Data 
 
Make sure you were able to perform a successful experiment (no violent movement of the 
mechanical system) and that you were able to upload the data according to the steps described 
above. 
1. Select Plotting - Setup Plot from the main menu (see Figure 1) to plot and examine       
     the data from your experiment and a window similar to Figure 10 will appear. 
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Figure 10: Setup Plot window 

 
 
2. Select the data you would like to plot by clicking on the names and click on the    
    Remove Item or Add to Left Axis or Add to Right Axis buttons to respectively        
    exclude or include the plot of that variable. You can plot a maximum of 2 variables per      
    axis and depending what you selected under Setup Data Acquisition, the following        
    variables can be plotted. 
 

Encoder 1 Position = Position of Mass/Inertia 1 
Encoder 2 Position = Position of Mass/Inertia 2 
Encoder 3 Position = Position of Mass/Inertia 3 

                                          Control Effort = Input Signal to Servo Motor 
                                           Commanded Position = Trajectory specified 
 
    Note that Velocity and Acceleration measurements are found by numerically       
    differentiating the measurements and tend to be noisy! 
3. For the open-loop experiments, it is best to plot the output (Encoder 1 and/or 2     
    Position) on the Left Axis and the input (Control Effort) on the Right Axis. For       
    closed-loop experiments, it is best to plot the output (Encoder 1 or 2 Position) and the      
     Commanded Position on the same axis to inspect overshoot and steady state errors. 
4. Click on Plot Data button and a plot of the data will appear in a new window. 
 
 
Saving Data 
Make sure you have performed a successful experiment and were able to plot the data as 
described in the steps above. Whenever you run a new experiment, the data of the previous 
experiment will be overwritten in memory. So if you like your measurement and you would like 
to save the data for your report for plotting purposes, follow these steps: 
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1. Select Data - Export Raw Data from the main menu (See Figure 1) to save your data 
before you start a new experiment. 

2. When saving the raw data, make sure you save it in your directory underC:\labcourse\ 
3. The saved data will be text file where the data is stored column-wise and can be opened 

with Notepad and/or Excel. The data file can directly be read by the Matlab program 
ecpread available in your directory. The Matlab program ecpread is also used by the 
Matlab script maelab available in your directory to plot your simulation and 
experimental results for Model Validation and Controller validation (see next page). 

4. You can also modify the text file into an m-file so Matlab can read the data. Details to 
convert the text file into an m-file can also be found in your lab handout and requires the 
following editing 

steps: 
a. First line in text file: Comment out the first line with % 
b. Second line in text file: Enter dummy= before the opening bracket [. 
c. Last line in text file: put a semicolon ; behind the closing bracket ]. 
d. After last line in text file: define time vector t, input vector u and output y by selecting the 
appropriate columns from the dummy variable. For example, if you have selected to save the 
control effort (input u) and the encoder 1 position (output y), this can be done by adding the 
following lines to the end of the text file: 

t=dummy(:,2); 
y=dummy(:,3); 
u=dummy(:,4); 
clear dummy; 

5. Save the raw text file as a file with the extension .m. Result is a Matlab script that can be 
run toread in your measurements. 

6. Final note: make sure you use the variables t, u and y to define respectively the time 
vector, the input vector and the output vector. This allows the data file to also be read by 
the script file maelab.m to validate your models. 

 
VALIDATION OF MODELS 
 
Comparing experimental data with a simulation can validate models of the ECP rectilinear and 
torsional system. Matlab can handle experimental data and simulations and you are provided 
with a script file called maelab to perform all the necessary simulation, validation and control 
steps. To use the maelab script file, follow the following steps: 

1. Start Matlab 
2. In the Matlab command window, type in pwd and verify that you are indeed in your 

working directory under C:\labcourse\ 
3. Edit the file parameters.m by typing in edit parameters to specify the parameters of 

your model. Make sure to save the parameters.m file before you continue. 
4. Run maelab script file by typing in maelab in the Matlab command window. 
5. Specify the encoder output (1 or 2) you are interested 
6. Specify the name of the filename that contains your model parameters (default 

parameters.m) 
7. Specify degrees of freedom you would like to simulate. Specifying 1 will simulate a 1 

Degree of Freedom (DOF) mass/damper/spring system, using only the model parameters 
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m1, d1 and k1. Specifying 2 will simulate a 2DOF mass/spring/damper system using m1, 
d1, k1 and m2, d2, k2. 

8. Specify the sign of the encoder (1 or -1). This is necessary when a positive step on the 
system results in a negative reading (use -1) of the encoder output. 

9. Use the menu option to “simulate open loop step response” or “simulate open loop 
sinusoidal response” and enter the values for the simulation. Typically the values should 
be the same as done during the experiment to be able to compare simulations with 
experiments. 

10. NOTE: when asked for a filename, make sure to put the filename between quotes, e.g. 
`myfile’ 

11. For validation purposes,  you should have a simulation and an experiment (based on step 
or sinusoidal excitation) that show close resemblance, similar to the figures below. 

 
 
 
 
 

 
Example of figure for open-loop step-based model validation 

 
VALIDATION OF CONTROL 
 
Before implementing a (new) control algorithm, first verify the performance of your proposed P-
, PD- or PID-control algorithm with Matlab by running a closed-loop simulation with the Matlab 
script file called maelab. Based on the model that you have validated (as indicated above) It 
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allows you to verify whether your control algorithm will be stable on the actual system and to 
verify whether the control signals stay within bounds and are not subjected to excessive 
oscillations when making a step on the reference signal. The procedure to validate the control 
algorithm before implementation is as follows: 

1. Start Matlab 
2. In the Matlab command window, type in pwd and verify that you are indeed in your 

working directory under C:\labcourse\ 
3. Edit the file parameters.m by typing in edit parameters to specify the parameters of 

your model. Make sure to save the parameters.m file before you continue. 
4. Run maelab script file by typing in maelab in the Matlab command window. 
5. Specify the encoder output (1 or 2) you are interested 
6. Specify the name of the filename that contains your model parameters (default 

parameters.m) 
7. Specify degrees of freedom you would like to simulate. For validation of the control 

algorithm you must specifying 2 to simulate the full 2DOF mass/spring/damper system 
using m1, d1, k1 and m2, d2, k2 parameters. 

8. Specify the sign of the encoder (1 or -1). This is necessary when a positive step on the 
system results in a negative reading (use -1) of the encoder output. 

9. Use the menu option to “Design/evaluate feedback controller” and enter the numerical 
values for the kp (proportional gain), kd (derivative gain) and ki (integral gain). Keep 
in mind the bounds on the gains to avoid excessive control signals: |kp| < 1, |kd| < 0.02 
and |ki| < 1. 

10. Make sure to motivate and argument the choice of your kp, kd and ki values in your lab 
report based on the figures being created by maelab script file. 

11. Use the menu option to “Simulate closed loop step response” and enter the values for the 
step response simulation. The values should be the same as done during an experiment 
for comparison purposes. Typically a closed-loop step should be in the order of 1000 
counts. 

12. NOTE: when asked for a filename, make sure to put the filename between quotes, e.g. 
`myfile’. Initially, for control validation purposes, no experimental data is required. 

13. For final validation purposes at the end of the 3rd week, you should have a simulation 
and an experiment (based on a closed-loop step response) that show close resemblance, 
similar to the figure below. 
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Example of figure for validation of control algorithm based on closed-loop step data and 

simulation 
 

CLOSED-LOOP EXPERIMENTS (2nd and 3rd week of lab) 
 
A closed-loop experiment for the rectilinear or torsional system requires the specification of both 
a control algorithm and a closed-loop trajectory. For the specification of the control algorithms 
and the closed-loop trajectory, please follow these steps: 
 
Setup of Control Algorithm 

1. Select Setup - Control Algorithm from the main menu bar (see Figure 1) to specify the 
servo control algorithm. A window similar to Figure 4 will open. 
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Figure 4: Setup Control Algorithm Window 

 
2. Make sure Type is set to Continuous Time and the Control Algorithm is set to PID to be 

able to specify a PID controller. 
3. Click on the Setup Algorithm button to set up the PID control algorithm and a window 

similar to Figure 5 will appear. 
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Figure 5: Setup PID Control Algorithm (continuous time) window 

 
4. Make sure you select the correct Encoder 1, 2 or 3 under Feedback and specify the value 

of the Kp (proportional gain), Kd (derivative gain) and the Ki (integral gain) in this 
window. Click on OK button to close the Setup PID Control Algorithm (continuous time) 
window. 

 
       NOTE: make sure Kp, Kd and Ki satisfy the following bounds to avoid excessive 
       control signals: 0<Kp<1, 0<Kd<0.02 and 0<Ki<1. Especially the bound on Kd of      
        0.02 is important as large derivative gains cause strong vibrations in mechanical     
        System that should be avoided at all times! 

 
5. In the Setup Control Algorithm (see Figure 4) make sure to click the Implement 

Algorithm button to actually implement the control algorithm. 
 

NOTE: keep the mouse hovering over the Abort Control button and give a small tap to       
   the mechanical system. If this results in excessive movement of vibrations of the              mechanical 
system your control algorithm may be destabilizing and a direct click on the Abort Control button 
shuts of the control algorithm 
 

6. If the implementation of the control algorithm does not result in excessive movement of 
vibrations of the mechanical system click the OK button to close the Setup Control 
Algorithm (see Figure 4) window. You should see the control is being active by the 
Control Loop Status: CLOSED in the main window of ECP (see Figure 1). 
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Setup of closed-loop trajectory 
1. Select Command - Trajectory from the main menu bar (see Figure 1) to specify the test 
signal (called trajectory) for the servo Motor. A window similar to Figure 2 will open, allowing 
you to specify various test signals (trajectories). Typically we will use Step and Sinusoidal 
inputs. 
2. Select Step and click on Setup button to set up the step signal. A window similar to Figure 6 
will open, allowing the specification of the Step Size, Dwell Time (how long is the step) and the 
number of repetitions. 

 
Figure 6: Configure Step Trajectory window for a closed-loop step 

For a closed-loop experiment, make sure to select Closed-Loop Step. This causes the Step Size 
to be expressed in units of counts, indicating a reference signal on the Servo Motor control loop 
in Encoder counts. 
3. Close the Configure Step window (Figure 6) by a click on the OK button and close the 
Trajectory Configuration window (Figure 2) also by a click on the OK button. 
This file is to give you instructions on how to use ECP_Data_Converter. 
The function of this program is to convert raw data from ECP programs to those acceptable for MATLAB. This will 
help relieve you from trivial work of copying data in a txt file and pasting them in a MATLAB script.  
  

How to use MATLAB with ECP Data Converter, simply follow the 

steps: 
Step 1: Decompressing the file, launch MATLAB, click ‘Open’ to select ‘ECP_Data_Converter.m’ and run this 

program (When asked if change the MATLAB current folder, choose ’Change Folder’); 

Step 2: A GUI, shown in Pic. 1, will pump out. 
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Pic. 1  

 
Step 3: Click ‘Select’, a window will pop up, asking for ECP data file. After choose your data 
file, click ‘OK’. Once your file has been successfully loaded, ‘Status’ will show ‘You have 
chosen file: {your file}’, and then you can proceed to the next step; 
Step 4: Click ‘Plot’, in the left blank space a plot containing the curves of all loaded data will 
appear. In addition, the Status will show ‘A plot has been generated’. 
Step 5: Click ‘Export Data’, a window will pop up, asking for the address and name you would 
like to store your data. The data will be stored in a .mat file. If you use load in MATLAB, you 
will automatically get a bunch of vectors.  These vectors are named after ‘Time’, ‘Encoder1Pos’, 
etc. And they store the corresponding data you just acquired from ECP. For example, you just 
obtained the counts of encoder 1 and encoder 2 and you save your data as ‘trial1.mat’ in the 
same folder with your MATLAB codes. In the beginning of your own MATLAB script, type 
load trial1. Then, you are free to use Time, Encoder1Pos, Encoder2Pos to do further data 
processing. If you drag trial1.mat directly to MATLAB command window, you will be able to 
see that the three variables will appear in workspace.  
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                                                 Experiment#1 
 
 
 
System Identification of a Torsional Control System  
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1. Background Theory 
 
This experiment will give a procedure for identifying the plant parameters for a torsional 
dynamic system. The approach will be to directly measure the inertia, spring, and damping 
parameters and hardware gain  by taking measurements of the plant while set up in a pair of 
classical spring mass configurations. 
 
 
 To become familiar with the operation of the equipment, it would be useful for any user to read 
section 1 of the manual in its entirety prior to undertaking the operations described here. Lack of 
time may preclude a detailed study of the manual, but, in any case, the safety portion of the 
manual, Section 1, must be read and understood prior to operating the equipment. 
 
properties of lightly damped second order systems to indirectly measure the inertia, spring 
constant and damping coefficients of the plant by making measurements with the plant set up in 
a pair of classical spring-mass configurations.  
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 Experimental work  
Obtain a set of masses, springs, tools and the lab manual from your tutor. (Make sure you return all of these at the 
end of the session)  
The ECP equipment has three disks. This experiment will derive parameters for the bottom disk 1 and the top disk 3. 
There are three parts to the experiment (Figure 1 shows the corresponding configurations): 

 

 
 
1. parameters for disk 1,  
2. parameters for disk 3, and  
3. test on a two disk system.  
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It is recommended that you save data and control configuration files regularly to avoid work loss 
should a system fault occur.  
 
Real-Time Control Implementation 
A functional overview of the control system is shown in Figure 4.0-1. The system is comprised 
of three susbsystems: The mechanism including motor and sensors, the real-time controller / 
drive electronics, and the user/system (“Executive”) interface software. 

 
                                              Overview of Real-time Control System. 
                                This architecture is consistent with modern industrial control implementation. 
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An brief survey of the system architecture is afforded by tracing the data flow as the system is 
operated. The user specifies the control algorithm in the Executive program and downloads it 
(via “Implement Algorithm”) to the DSP based real-time controller board. The DSP immediately 
executes the algorithm at the specified sample rate. This involves reading the reference input1 

and feedback sensor (optical encoders) values, computing the algorithm, and outputting the 
digital control effort signal to the digital to- analog converter (DAC). 
The DAC converts the resulting stream of digital words to an analog voltage which is 
transformed to a current by the servo amplifier and then to a torque by the motor. The 
mechanism transforms the motor input to motion at the desired output according to the plant 
dynamics (i.e. equations of motion). These plant outputs are sensed by the encoders which output 
a stream of pulses2. The pulses are decoded by a counter on the DSP board and made available as 
a digital position word to the real-time control algorithm. 
When the user specifies a trajectory and subsequently commands the system to “Execute” the 
maneuver, the trajectory parameters are downloaded to the controller board. The DSP generates 
corresponding reference input values for use by the real-time control algorithm. Throughout the 
maneuver, any data specified by the user is captured and stored in memory on the board. On 
completion of the maneuver, the data is uploaded to PC memory where it is available for plotting 
and storage. 
 
Part 1 - Parameters for disk 1  
 
Carry out the following steps to determine the inertia and coefficient of friction for the first disk 
and the torsional spring constant:  

2. Clamp the centre disk to put the mechanism in the configuration shown in the 
configuration diagram (shown in Figure 1), using the 1/4" bolt, square nut, and clamp 
spacer. Only light torqueing on the bolt is necessary.  

3. Secure four 500g masses on disk 1 as shown in Figure 1. Verify that the masses are 
secured and that each is at a centre distance of 9.0 cm from the shaft centre-line.  

4. With the controller powered up, go to Set-up/Control Algorithm and set . Go to 
Command /Trajectory and select Step, Set-up. Select Open Loop Step and input a step 
size of zero, duration of 4000 ms and 1 repetition. This puts the controller in a mode for 
acquiring 8 sec of data on command but without driving the actuator. Exit to the 
background screen by consecutively selecting OK. This procedure may be repeated later 
to vary the data acquisition period. TS = 0.00442.  Go to Data/Set up Data Acquisition 
and ensure that Encoder #1 is selected as data to acquire and specify data sampling every 
2 servo cycles (i.e. every ). Select OK to exit. TS = 2. Select Utility /Zero Position to zero 
encoder positions.  

5. Go to Command /Execute. Prepare to manually displace the disk 1 approximately 20 
degrees. Exercise caution in displacing the inertia disk; displacements beyond 40 degrees 
may damage and possibly break the flexible drive shaft. (Displacements beyond 25 
degrees will trip a software limit that disables the controller indicated by "Limit 
Exceeded" in the Controller Status box in the Background Screen. To reset, simply 
reselect Execute from the Execute menu.) With the disk displaced approximately 20 
degrees (≤1000 encoder counts as read on the Background Screen display) in either 
direction, select Run from the Execute box and release the disk approximately 1 second 
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later. The disk will oscillate and then settle while encoder data is collected to record the 
response. Select OK after the data is uploaded.   

      Export the data from ECP to MATLAB, and plot the Encoder 3 data using MATLAB. Be  
      sure to clearly label the plots. To export the data to MATLAB, refer to Page 13  
 
6. Go to Plotting /Set-up Plot and choose Encoder #1 Position then select Plot Data from 

the Plotting menu. You will see the time response.  
The damped frequency (see section 1) can be obtained by measuring the interva l 
between successive peaks of the waveform (This is valid for at least the first few large 
peaks. Smaller peaks later are dominated by nonlinear friction effects and do not reflect 
the salient system dynamics). Note that we are using "d11" as a subscript to denote disk 
#1, trial #1. You may “zoom” the plot via Axis Scaling for more precise measurement. 
Similarly, the damping ratio can be obtained by comparing heights of successive peaks 
(see section 1). Natural frequency ωnd11 can be obtained from ωdd11 and ζ d11 

 

 
            Make sure to export the data from ECP to MATLAB and create a new figure for this      
            data, and clearly label the plot and the beginning and end points as you did in the step     
            before 

 
             How does this damping ratio compare with that for the upper disk? Why might it be        
            different? 

7. Close the graph window by clicking on the left button in the upper right hand corner of 
the graph. This will collapse the graph to an icon, from where it may later be brought 
back up.  

8. Remove the four masses from the disk and repeat steps 3 through 7 to obtain , ωdd12 , ζ d12 
, and ωnd12  for the unloaded disk. If necessary, in step 3, adjust the execution (data 
sampling only in this case) duration.  

9. Each brass weight has a mass of 500 ± 5 g and a diameter of 5.00 ± 0.02 cm. Calling the 
inertia of the four masses combined Jm , use the following relationships (see section 1) to 
solve for the unloaded disk inertia Jd1 , and the lower torsional spring constant kd1 

 

10.  
11. Here J m  is the moment of inertia of the four 500 g masses about the disk axis and has a 

value of 0.0168 Kg-m2. Note that the calculated inertia Jd1 will include the reflected 
inertias of all connected elements such as motor, belts and pulley. Finally, the damping 
coefficient can be found by using  
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Transfer Function Calculation 

The so-called hardware gain, khw,1 of the system is comprised of the product: 

  

 khw = kckaktkpkeks (12) 

where: 

 kc, the DAC gain, = 10V / 32,768 DAC counts 
ka, the Servo Amp gain, = approx. 2 (amp/V) 
kt, the Servo Motor Torque constant =  approx. 0.1 (N-m/amp) 
kp, the Drive Pulley ratio = 3 (N-m @ disk / N-m @ Motor) 
ke, the Encoder gain, = 16,000 pulses / 2 radians 
ks, the Controller Software gain, = 32 (controller counts / encoder or ref input counts)2 

The  report is to include the following: 
A diagram identifying the control elements and signals in the Torsion Experiment. 
Sensor:  
Actuator: 
Controller:  
Reference Input: 
Actuator Output: 
 System Output: 
MATLAB Plots, with Data Cursor Points on each plot, along with titles, labels and legends if 
necessary that clearly show which plot corresponds to which situation. 
- Disk 3 Trial 1 
- Disk 3 Trial 2 
- Disk 1 Trial 1 
- Disk 1 Trial 2 
Calculations the following values, along with units  
- Natural frequencies  
- Damping ratios  
- *Inertia of the masses (Jm) 
- Inertia of Disk 1 (Jd1 ) 
- Inertia of Disk 3 (Jd3 ) 
- Damping constant on Disk 3 (cd3 ) 
- Damping constant on Disk 1 (cd1 ) 
- Spring constant on Disk 3 (kd3 ) 
- Spring constant on Disk 1 (kd1 ) 
For calculate the inertia of each weight about its center of gravity (Jcg=0.5m*r2). 
Then, use the parallel axis theorem to get the inertia about the center of rotation (J=Jcg+mR2). 
Then multiply four to get Jm 

                                                 
1It contains software gain also.  This software gain, ks is used to give higher controller-internal numerical resolution 
and improves encoder pulse period measurement for very low rate estimates. 
2The “controller counts” are the counts that are actually operated on in the control algorithm.  i.e. The system input 
(trajectory) counts and encoder counts are multiplied by 32 prior to control law execution. 
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 Introduction  
 
This experiment demonstrates some key concepts associated with proportional plus derivative 
(PD) control and proportional plus integral plus derivative (PID) control. This type of control 
scheme finds broader application in industry than any other. It is employed in such diverse areas 
as machine tools, automobiles (cruise control), and spacecraft (attitude and gimbal control).  
The block diagram for forward path PID control of a rigid body is shown in Figure 1(a) where 
friction is neglected. Figure 1(b) shows the case where the derivative term is in the return path. 
Both implementations are found commonly in application and both give rise to the same 
characteristic roots and therefore have identical stability properties but vary in their response to 
dynamic inputs 

 
 
 The Khw appearing in the block diagrams is referred to in the ECP manual as the “hardware gain” (in fact, it 
includes a software component). It accounts for DAC and amplifier gains, encoder gains, software gain factor, etc. It 
has units of N-m/rad; the plant gain has units of rad/N-m – position/torque, so the two combined have dimensionless 
gain.  
For the first portion of this exercise we shall consider PD control and carry out a test to evaluate Khw . We shall then 
include an integral term in the controller. The closed-loop transfer function for the forward path PID control (see 
Figure 1(a)) is:  

 
 
 
In this experiment, we will work with the derivative term in the return path. The closed-loop 
transfer function in this case (see Figure 1(b)) is: 
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Note that the characteristic polynomials are identical in the two cases. In the absence of the 
integral term (i.e. KI = 0), the transfer function reduces to  

 
 
Experimental   
 
• Plant set-up  
Set up the plant with two mass pieces at 9.0 cm radial center distance on the bottom disk and 
with the other two disks removed.  
 
• Proportional control and evaluation of Khw  
 
For proportional control, KI =  0 and KD = 0 . As equation (4) shows, ζ= 0 so no damping is 
provided by the control action (although, as found in Lab #1b, there will be a small amount of 
frictional damping which is not shown in the block diagram). From equation (4), determine the 
value of KhwKp so that the system behaves like a 1 Hz spring-inertia oscillator (i.e., rad/sec). has 
an approximate value of 17.0 N-m/rad but its value varies significantly from one set of 
equipment to another. Assuming a value of 17.0 N-m/rad, determine the value of Kp . Now carry 
out a test and measure the actual frequency of oscillation using the following steps:  
 
1. Go to Data/ Set-up Data Acquisition and set up to collect Encoder #1 position and 
Commanded Position information. Go to Command/Trajectory and set up a closed-loop step 
size of 0 counts, dwell time of 5000 ms and 1 repetition.  
 
2. Go to Set-up/Control Algorithm and set Ts = 0.0044 and select Continuous Time Control. 
Select PI + Velocity Feedback (this is the return path derivative form shown in Figure 1(b)) and 
Set-up Algorithm. Enter the Kp value determined above for 1 Hz oscillation and set KI and KD to 
zero. Do not input values greater than Kp = 0.08 . Select OK to exit.  
 
IMPORTANT: In this and all future work, be sure to stay clear of the mechanism before doing 
the next step. Selecting Implement Algorithm immediately implements the specified controller; 
if there is an instability or large control signal, the plant may react violently. If the system 
appears stable after implementing the controller, first displace it with a light, non-sharp object 
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(e.g. a plastic ruler) to verify stability prior to touching plant Select Implement Algorithm, then 
OK. 
  
3. Go to Command/Execute. Prepare to manually rotate the lower disk roughly 60 degrees. 
Select Run, rotate the disk about 60 degrees and release it. Do not hold the rotated disk position 
for longer than 1-2 seconds as this may cause the motor drive thermal protection to open the 
control loop.  
 
Export the data to MATLAB. Plot the encoder 1 data Calculate the frequency by using the Data 
Cursor Tool in the MATLAB Figure. Be sure to show the calculations and units. For system 
stability, do not input values greater than kp = 0.16). 
 
4. Go to Plotting/Set-up Plot and plot Encoder #1 position. Determine the frequency of 
oscillation.  
 
Use the measured value of frequency to find an accurate value of for the system that you are 
working on. Use this value for the rest of the experiment. Khw 
Now adjust to the correct value to give an oscillation frequency of 1 Hz and repeat the above 
steps to check the frequency. Kp  
What do you expect to happen when the proportional gain is doubled? Verify your predictions 
experimentally. Again, for system stability, do not input values greater than . PK 0.08PK= 
 
 
 
• Derivative control  
 
Determine the value of the KD = 0.1 derivative gain to achieve KDKhw = 0.1N-m/(rad/s) . Repeat 
step 2 above, except input the value for KD computed above, and set Kp as well as to zero. Do 
not input values greater than KD=0.1. 
 
After checking the system for stability by displacing it with a ruler, manually rotate the disk back 
and forth to feel the effect of viscous damping provided by KD . Do not excessively coerce the 
disk, as this will again cause the motor drive thermal protection to open the control loop.  
Repeat for a value of KD five times as large (again make sure that KD< 0.1 ). Can you feel the 
increased damping?  
 
• PD control design  
 
Using equation (4), design controllers (i.e. find KP and KD ) for three systems with the same 
natural frequency of 1 Hz (i.e. ωn = 2π rad/sec), and damping ratios of (i) ζ=  0.2 (i.e. 
underdamped), (ii) ζ= 1.0 (i.e. critically damped), and (iii) ζ = 2.0 (i.e. overdamped).  
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Step Response:  
 
Implement the underdamped controller (via PI + Velocity Feedback) and set up a trajectory for a 
2500 count closed-loop Step with 2000 ms dwell time and 1 repetition (which has the effect of 
setting up an input shown in Figure 2). Execute this trajectory and plot the Commanded Position 
and Encoder #1 position. Plot them both on the same vertical axis so that there is no graphical 
bias.  
Repeat for the critically damped and over-damped cases. Save your plots for later comparison.  
 
 
Frequency Response:  
 
Implement the underdamped controller. Set up a trajectory for a 400 count closed-loop Sine 
Sweep from 0.1 Hz to 20 Hz of 60 seconds duration with Logarithmic Sweep checked (which 
has the effect of setting up an input shown in Figure 2; the signal is actually a “chirp” signal of 
the form sin(2πfi) with  fi = fo +10βt). (You may wish to specify Encoder #1 data only via Set-
up/Data Acquisition. This will reduce the acquired data size.) Execute the trajectory and plot the 
Encoder #1 frequency response using Linear Time and Linear Amplitude for the horizontal and 
vertical axes. The data will reflect the system motion seen as the sine sweep was performed. Plot 
the Encoder 1 frequency response using Linear Time and Linear amplitude for the horizontal and 
vertical axes in MATLAB. The data will reflect the system motion seen as the sine sweep was 
performed.Now plot the same data using Logarithmic Frequency and dB Amplitude. By 
considering the amplitude (the upper most portion of the data curve) you will see the data in 
Bode magnitude format. Can you easily identify the resonance frequency, and gain slopes in 
dB/decade?  
Repeat for the critically damped and overdamped cases (can you easily identify the high 
frequency (>5 Hz) and low frequency (< 0.8 Hz)?). Save your plots for later comparison. 
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• Adding integral action  
 
Now compute KI  such that KIKhw =3.0N-m/(rad-sec)  . Implement a controller with this value of 
KI , and values of Kp and KD that achieved critical damping under the PD control design above. 
Do not input . Be certain that the following error seen in the background window is within 20 
counts prior to implementing (if not, choose Zero Position from the Utility menu). Execute a 
2500 count closed-loop Step of 2000 ms duration (1 repetition). Plot the Encoder #1 position and 
the Commanded Position.  
Increase KI by a factor of two, implement your controller (again make sure that KI <0.4 ) and plot 
its step response. Manually displace the disk by roughly 5 degrees. Can you feel the integral 
action increasing the restoring control torque with time? (Do not hold for more than about 5 
seconds to avoid excessive force build-up and hence triggering of the motor thermal protection.) 
What happens when you let go?  
 
• Modeling static friction  
 
Static or Coulomb friction may be modeled as some disturbance torque acting on the plant, as 
shown in Figure 3. Assume that this torque is a step function, and use the Final Value Theorem 
to explain the effect of such an input on the PD controlled system with and without the addition 
of an integral term. 
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The final report have to  include: 
 
Two (6) MATLAB Plots, with two (2) Data Cursor Points on each plot, along with titles, labels 
and legends if necessary that clearly show which plot corresponds to which situation. 
- Plot of kp 
- Plot of 2kp 
Calculations  
- Inertia of the System J  
- Calculation for kp 
- Experimental frequency calculations using the kp value calculated. 
- Calculations for kd 
- Under-damped step response 
- Critically damped step response 
- Over-damped step response 
Calculations . 
- Kp 

- Under-damped kd 

- Critically damped kd 

- Over-damped kd 

- Calculated ki 

- Experimentally “better” ki 

 
In your final report observe these results and explain the effects of adding integral action to the 
controller. Is this what you expect? 
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In this experiment we consider PD control of a 2-disk system where the controlled output, , is 
of the lower disk.  Such a scheme is referred to as collocated since the sensor output is rigidly 
coupled to the actuator input.   
 
The addition of the spring and second inertia increases the plant order by two and adds an 
oscillatory mode to the plant dynamics.  This may be thought of, in a sense, as a dynamic 
disturbance to the rigid body plant studied in  experiment 2.  The collocated PD control 
implemented here is the approach most commonly used in industry.  It may be practically 
employed when there is flexibility between the actuator and some inertia, and the location of 
objective control being near the actuator.  If the location of objective control is at the distant 
inertia, however, this method has its limitations. 
 
The approach in this experiment will be to design the controller by interactively changing the PD 
gains and observing their effect on the physical system. 
 

Procedure : 

1. Set-up the system with two masses on the upper and lower disk as shown in 
experiment 1, Figure 1b. 

2. Implement the critically damped controller  of experiment 2 being sure that 
encoder #1 is selected for control.  Set-up data acquisition for encoders 1 & 3 
(Model 205) and for commanded position and gather data every 5 servo cycles.  
Execute a 1000 count step response and plot the result for commanded position 
and encoder #1. 

3. Now iteratively adjust the gains kp & kd  and plot results to obtain an improved 
response.  Make your gain adjustments gradually (not more than 50% at a time) 
and note the effects of increasing or reducing each of them.  Do not input kp >1 
or 0.02 < kd > 0.2.  Attempt to achieve performance goals for the lower disk of 
≤ 400 ms rise time (0-90% amplitude) and ≤ 10% overshoot in the lower disk 
(encoder #1) without excessive oscillation.  Save your best step response plot.  
Manually displace the upper and lower disks and note their relative stiffness.  
(The lower disk stiffness is entirely due to the control system. 

4. For your last iteration in Step 3, plot and save the step response of the two 
disks.  What is the predominant characteristic of the top disk motion?  Can you 
give an explanation for the difference in the responses of the two disks in terms 
of their closed loop transfer functions? 

5. Now using the existing values of kp & kd as starting points, iteratively reduce 
gains and plot 2 results to provide a well-behaved step response with ≤ 10% 
overshoot, without excessive oscillation, and as fast a rise time as possible.  
Save your final plot and record the corresponding gains.  Manually displace the 
lower and upper disks and note their stiffness.  Are they generally more or less 
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stiff than for the controller of Step 3?  How does the steady state error compare 
with the high gain controller from Step 3? 

Questions: 

A. Calculate the poles of the closed-loop transfer functions: (s)/r(s) and 2(s)/r(s) for 
your final controllers in Steps 3 & 5 respectively.  How close to the imaginary axis (& 
right half plane) are the most lightly damped poles in each case?  How close are the 
complex poles of (s)/r(s) to its zeros in each case?  Explain your answer in terms of 
the root loci for this system for gain ratios of kd/kp = 0.05, 0.10, 0.17, and 0.25. 

B. Calculate the closed loop transfer function in the form: 

   
(3-1)

  

 Use Nol and Dol to obtain the open loop Nyquist or Bode responses resulting 
from your high and low gain controllers from Steps 3 & 5 respectively.  What 
are the associated phase and gain stability margins?  What are these margins 
for  (s)/r(s)?  Explain 

 

 

 
Figure 3-1.  Disturbance Torques On PD Controlled 2-DOF Plant 

 
3.5  Noncollocated PD Plus Notch Filter Control 
 
In this experiment a control scheme is implemented which first closes the collocated loop with 
simple rate feedback to dampen the oscillatory mode.  Then a notch filter is designed to further 
attenuate the transmission of signals at the damped mode frequency (i.e. nearly canceling the 
poles with zeros).  Finally, PD control is used to achieve certain performance goals.  As in the 
previous section, these gains are found through interactively changing their values and observing 
the resulting closed loop behavior. 
 

2(s)
r(s)

 =  
N(s) forward path / Dol(s)

1 + Nol(s)/Dol(s)
 

Controller

khw

Hardware 
Gain


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r(s)
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(s)

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Disturbance 
Torque

N1(s)
D(s)

kp + kds
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Procedure : 

1. The plant studied here is that of the two previous exercises, i.e. the one shown 
in Figure 3.1-1b.  Consider the block diagram of Figure 3.5-1.  Use root locus 
techniques to find the rate feedback gain, kv, that causes the greatest damping 
in the complex roots of the inner loop (s)/r*(s). 

2. Implement this gain as the f1 coefficient in the General Form controller 
specification box.  Be sure that you select encoder #1 for feedback loop #3 
before exiting the box and implementing.  Attempt to manually excite the 
oscillatory mode via the upper disk and notice the damping effect of velocity 
feedback.   

 

 
Figure 3.5-1.  Control Structure  

 

 

3. We may now design for the new "plant" G*(s) where N2(s) is as before, and: 

  D* (s)   D(s)+kvs N1(s)  (3.5-1) 

 Design a notch filter, Nn(s)/Dn(s) with two poles at 10.0 Hz and 70.7% 
damping (= ), two poles at 40.0 Hz and 70.7% damping and with two zeros 
at the poles of D*(s).  Utilize a monic form of the denominator (highest order 

kp

PD
Controller

khw
–

r(s)
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(s)(s) N2(s)
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N1(s)
D(s)

–

kvs

Rate Feedback

Nn(s)
Dn(s)

Notch Filter

G*(s)
N2 (s)

D*(s)

r*(s)

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–

kds

=
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term in Dn(s) has coefficient of 1) and normalize the notch filter transfer 
function to have unity DC gain.3 

4. Select some initial PD gains for control of 2.  Use values of kp = 0.01, kd = 
0.001 initially.  Do not exceed kp = 0.1 and kd = 0.02 in any subsequent run.  
Since this control scheme uses multiple loop feedback, the Executive program 
requires that it be implemented via the general control algorithm form.  A 
short-cut to controller coefficient entry is as follows:  Input your notch filter 
coefficients and proportional controller gain, kp, via the dialog box PID + Notch.  
Be certain to enter these coefficients in the proper order and to high numerical 
precision (e.g. 8 decimal places).  Exit and select Preview In General Form.  You 
will see the P + notch controller in the form that it is implemented in the 
generalized controller form.4    

  
 In the General Form window, enter the f1 coefficient calculated in Step 1 (i.e. 

kv), and enter as i1 the desired derivative gain, kd.  Make sure that Encoder #1 is 
selected for Loop #3 and Encoder #3 is selected for Loops #1&2 (the above for 
Model 205a, for Model 205 select Encoder #2 for Loop #1).  You should verify 
that these entries appropriately represent the control structure of the controller 
in Figure 6.5-1.  Exit the box and make sure that General Form is selected; then 
Implement.  Now check performance of the control using step trajectories of 
1000 counts. 

5. Iteratively change PD gains by repeating Step 4 to obtain performance goals of 
0.4 sec rise time (0-90% of final amplitude) and overshoot less than 15%.  Do 
not exceed kp=0.10 or kd=0.01.  You may notice a trend here that for relatively 
high values of kd the system transmits excessive noise and may appear 
"twitchy".  As kp becomes large, the system becomes oscillatory and further 
increases lead to instability.  Does increase in noncollocated derivative action 
necessarily reduce the step response oscillations? 

6. Record your best performance step response.  Manually displace the disks and 
note the relative static stiffness of the upper disk under this control.   

 

 

 

 

 

 

 

                                                 
3For discrete time design, convert your notch filter design to the z domain using the Tustin (bilinear) 

transformation:  
 

4r(s) will be the same as Dn(s) and s(s) & t(s) will be identical and equal to kpNn(s).  Upon selecting Preview In 

General Form the algorithm is also converted to discrete time form (by the Tustin transform for Nn and Dn, 
backwards difference for any derivative terms).  In this way the discrete time equivalent controller may be viewed in 
the discrete time General Form controller box. 

s = 2
Ts

 1 -z-1

1 +z-1
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Questions: 

A. Report your calculated values for kv, Nn(s), Dn(s), and your selected values of kp, kd.  
Submit your step response plot.  Does it meet the performance goals of Step 5? 

B. Calculate the closed-loop transfer function 2(s)/r(s) including all elements in the 
block diagram of Figure 6.5-1.  You may express this in terms of the polynomials D(s), 
N1(s), Nn(s), etc. rather than expanding each term fully.  Use the equation 

    
(3.5-2)

 

 

 and determine the phase and gain margins of your system design via Bode or Nyquist 
plots.  What would happen if you doubled your gains kp and kd?.  What if you 
quadrupled them? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(s)
r(s)

 =  
N(s) forward path / Dol(s)

1 + Nol(s)/Dol(s)
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Experiment 4 
 
 

Successive Loop Closure / Pole Placement 
Design For 2 DOF Plant 
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In this experiment we first close a position loop about the collocated () position with a 
relatively high bandwidth (close tracking) PD control.  We then make the assumption that the 
lower disk closely follows its internal demand r*(s) so that for designing a controller for , the 
"plant" is approximated by the transfer function 2(s)/(s) (i.e. N2/N1(s)).  The block diagram 
for this approach is given in Figure -1.   
The design and control implementation in this section proceeds as follows 

1.  High bandwidth PD control of  
2.  Low pass filter augmentation to attenuate signal noise due to high PD gains 
3.  Outer loop control of  via pole placement methodology  

 
 
4.6.1  PD Control Of The Lower Disk 
 

1.  Setup the plant in the configuration of Figure 1. in experiment 1. 

PD Control Design & Implementation 

1.  design the PD control gains such that n = 10 Hz, and  = 0.707 when 
considering only J1 acting as a rigid body. 

2. Set the sampling rate to Ts = 0.002652 seconds and implement your gains via 
the PID control algorithm box.  You should notice some system noise 
associated with the high derivative gain term.  Discontinue the control via Abort 
Control. 

 

 
Figure -1.  Control Structure For Successive Loop Closure with High Gain Inner Loop 

 


–

rr(s)
khwN1(s)

D(s)
–

S (s)
R(s)

 kp + kds

N1(s)

r*(s)
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Low Pass Filter Design & Implementation 

3. Solve for the constants af, and bf such the filter has a pole at s = -240 
(approximately 40 Hz) and has unity DC gain. 

4. Calculate the numerator and denominator of the controller associated with the 
cascade of the PD and low pass filter blocks.  These will have the form 

 

 PD*Filter =  (1) 

 

5. In the Generalized Form box, enter the following.   

a. Enter your calculated ei’s and gi’s 

b. Select Encoder #1 for Loop #2. (the other loops may have any encoder 
selected at this point) 

c. Set the following equal to 1:   t0, h0, i0,  

d. Verify that r1 = 0.00000025 

e. Verify that all other coefficients = 0 

 It is important to take care and assure that all parameters are properly set before 
leaving the Generalized Form dialog box and implementing control. 

6. Exit the dialog box, verify that the Generalized Form button is selected, and 
Implement control.  You should notice a reduction in audible signal noise.  
Safety check the controller and manually displace the disks.  They should 
behave as before in Step 2. 

 
 
4.2  Pole Placement Control of 2(s)/(s) 
 
Having closed a relatively high bandwidth (≈10 Hz) loop about the first disk, we utilize the fact 
that the transfer function of Eq. 
 

 
 has near unity input/output gain (and near zero phase) through the bandwidth (≈ 2.5 Hz) that we 
will attempt to attain in the overall control of 2.  Thus for the control of 2 we consider the outer 
loop in the block diagram of Figure -1. 

                                                 
5 This small value is needed to provide a proper transfer function for bilinear transformation and subsequent discrete 
control implementation whenever T/R and S/R are used to implement a differentiator.  Its small value results in a 
pole many decades beyond the system bandwidth and is of no practical implication to system modeling or 
performance.  This coefficient may be set to zero here, but should generally remain. 

e0 + e0s
g0 + g1s

c(s) =  n
2

s 2 +2ns  +n
2
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Now the plant to be controlled is: 
 
 

  (2) 

 
The numerical values of the parameters in this expression were determined in Experiment #1. 
 
We now seek to find a controller S(s)/R(s) which will result in a prescribed set of closed loop 
poles.  The closed loop denominator will have the form: 
 
 
  (3) 
 
 
which may be expressed as6 
 
  (4) 
 
where the di's and ni's are the respective coefficients of the denominator and numerator of the 
right hand side of Eq. (2).   

By linear system theory, for coprime N*(s), D*(s) with N*(s)/D*(s) proper, there exists an (n-1)th 
order S(s), R(s) which when convolved as form an arbitrary (2n-1)th order Dcl(s) where n is the 
order of D*(s). 
 
Here we shall solve for the desired denominator: 
 
 

  (5) 
 
 
I.e. closed loop poles at -2.5, and -1.77± j1.77Hz.7 

 

Pole Placement Design 

7. Determine the coefficients of the controller polynomials S(s) and R(s) by 
equating coefficients in the expanded forms of Eq's 4 and 5.   

                                                 
6The notation here is the obvious one. 
7 This has poles of magnitude |s| = 2.5 Hz that lie at 135, 180, and 225 deg. It is similar to a third order Butterworth 
polynomial but somewhat more damped. 

2(s)

1(s)
  = N2

N1
  =


 
N *(s)

D*(s)

Dcl(s) = D*(s)R(s) + N *(s)S(s)

Dcl(s) = (d2s2 +d1s +d0)(r1s +r0) + (n0)(s1s +s0)

Dcl(s) = s+5 
(1+j)

2
s+5 

(1-j)
2

s+5
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8. Calculate the scalar prefilter gain kpf by referring to Figure 1.  The goal is to 
have the output 2(s) scaled equal to the input rr(s).  Hint:  Consider the system 
in static equilibrium.  Set 2 =1 and rr = 1 and solve for kpf using only the 
constant terms in all control blocks. 

Control Implementation 

9. In the Executive program, set-up to collect Encoder #1, Encoder #3 and 
Commanded Position information8 via Set-up Data Acquisition with data sampling 
every two sample periods.  Setup a closed loop step trajectory of 1000 counts, 
2000 ms duration and 1 repetition.  

10. Return to the General Form Algorithm box and verify that the PD controller, low 
pass filter and all other coefficients are entered as given in Step 5 above.  Enter 
the coefficients for S(s) and R(s) determined in Step 1.  Enter the value kpf 
calculated in Step 8 as to.  Make sure that Encoder #3 is selected for Loop #1 
(for Model 205a, Encoder #2 for Model 205) and Encoder #1 for Loop #2.  
Select OK to exit to the controller selection dialog box.  

11. While staying clear of the mechanism select Implement Algorithm.  If the 
mechanism reacts violently you have implemented an unstable controller or 
otherwise improperly entered the control coefficients and you will need to 
repeat the above steps as appropriate.  You should first Reset Controller (Utilities 
menu) before attempting to re-implement control.  If the system is well 
behaved, and after safety checking the controller, you may disturb the upper 
and lower disks lightly.  Notice the relative stiffness of the two disks and how 
the lower disk moves in opposition to (i.e. regulation of) disturbances of the 
upper disk.   

 You may notice some "twitching" or buzzing due to noise in the system.  This 
often occurs in such high gain systems, but has been mitigated via the low pass 
filter.  If the noise is excessive or there is any possibility that the equipment is 
at risk discontinue control immediately. 

12. Execute the Step input previously programmed, and plot the Encoder 1, 
Encoder #2, and Commanded Position data.  Save your plot.  How does the 
response at 2 compare with designs previously tested?  Describe the motion of 
 and how it shapes the response at  2. 

 

 
A. Report your calculated values for kp, kd, af, bf, e0, e1, g0, g1, s0, s1 , r0, r1, and kpf 

 

 

 

 

                                                 
8You may also select Control Effort if you wish to later observe this value . 
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Experiment 5 
 
 
 
 
 
 
 
 
 
 

LQR Control Design For 2 DOF Plant 
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In this experiment a linear quadratic regulator is implemented using full state feedback.  The 
plant used is again that of Figure 6.1-1b.  The states chosen are the disk angles and rates 
according to the model of Eq (5.1-3) with the output taken as 2, i.e.   
 
   (1) 

LQR Design: 

1. Construct a state space model of the plant using the realization of Eq (4.1-3) 
and measured parameter values  

2. The following notation shall be used for LQ optimization: 

 

 Feedback law: 

   (2) 

 

 where  

   (3) 

 

 Perform LQR synthesis via the Riccati equation solution9 or numerical 
synthesis algorithms to find the controller K which minimizes the cost function 
(scalar control effort): 

 

   (4) 

 In this synthesis choose Q=C'C so that the error at the intended output, 2, is 
minimized subject to the control effort cost.  Perform synthesis for control 
effort weight values: r = 100, 10, 1.0, 0.01, and 0.001.  Calculate the closed 
loop poles for each case as the eigenvalues of [A–BK] 

3) From this data, select a control effort weight to put the lowest pole frequency 
between 2.75 and 3.25 Hz.  Use one of the above obtained K values if it meets 
this criteria, or interpolate between the appropriate r values and perform one 
last synthesis iteration.  Do not use K1 or K3 values greater than 1, or K2  or K4  
values greater than 0.12.10   

                                                 
9See for example Kwakernaak and Sivan, "Linear Optimal Control Systems", Wiley & Sons, 1972. 
10K1 and K3  scale control effort proportional to position errors, K2 and K4 scale control effort proportional to the 
respective velocities.  Excessive values of K1 or K3  can lead to low stability margin and in the presence of time 
delays, instability.  Large K2 or K4 cause excessive noise propagation and lead to "twitching" of the system. -  see 
Section 6.8 

C = 0 0 1 0

u = -Kx

K = K1 K2 K3 K4

J = x ' Qx +u2r dt
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Control Implementation 

Important Note:   For Model 205a, (3 encoders), 2 is measured via Encoder #3.  
The design gains K2 +K3  are therefore input as k5 and k6 in the Executive’s 
State Feedback box. 

4) Implement your controller via the State Feedback box under Control Algorithm.11  
For tracking, the prefilter gain Kpf must be set equal to K1 +K3 .  You may wish 
to select Preview In General Form to see how these parameters are mapped into 
the generalized algorithm. 

5) Execute a 1000 count step and plot the result.   How do the rise time, 
overshoot, servo stiffness, and steady state errors compare with previous 
controllers? 

Questions / Exercises: 

A. Report your calculated values of the closed loop poles for the various values of r in 
Step 2 and for your final design.  Report the values of K, for your final design. 

B. Calculate the closed-loop transfer function 2(s)/rr(s) including all elements in 
the block diagram of Figure 1b (lower subfigure).  You may express this in 
terms of the polynomials D(s), N1(s), N2, and  Ki  (i = 1,2,3,4).  Determine the 
phase and gain margins for the system by considering the open loop 
“numerator” to be all terms in the closed loop denominator except D(s)12. 

Questions / Exercises: 

A. Report your calculated values of the closed loop poles for the various values of r in 
Step 2 and for your final design.  Report the values of K, for your final design. 

B. Calculate the closed-loop transfer function 2(s)/rr(s) including all elements in 
the block diagram of Figure 1b (lower subfigure).  You may express this in 
terms of the polynomials D(s), N1(s), N2, and  Ki  (i = 1,2,3,4).  Determine the 
phase and gain margins for the system by considering the open loop 
“numerator” to be all terms in the closed loop denominator except D(s)13. 

 

 

                                                 
11If using discrete time implementation, be sure to divide your K2 and K4  values by Ts before entering them.   
12 This yields the margins as if the additional phase lag or gain were to occur in the control input (i.e. khw block), or 
uniformly among the outputs.  This is not necessarily the case in practice, but does provide a general measure of 
stability margin. 
13 This yields the margins as if the additional phase lag or gain were to occur in the control input (i.e. khw block), or 
uniformly among the outputs.  This is not necessarily the case in practice, but does provide a general measure of 
stability margin. 
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Figure -1.  Representations of the Full State Feedback System 
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                                                 Experiment#6 
 
 
 
System Identification of a Linear Plant Control System  
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Introduction  
 
This document describes experiments to be carried out on the ECP Systems Model 210a Linear 
Plant. Much of the work is concerned with system identification, i.e. determination of parameter 
values of models of the system. Part of the work involves using the values obtained in a Matlab 
simulation.  
To become familiar with the operation of the equipment, it would be useful for any user to read 
chapter 1 of the manual in its entirety prior to undertaking the operations described here. Lack of 
time may preclude a detailed study of the manual, but, in any case, the safety portion of the 
manual, Section 1.3, must be read and understood prior to operating the equipment.  
The procedures described here for identifying plant parameters use certain fundamental 
properties of lightly damped second order systems to indirectly measure the mass, spring 
constant and damping coefficients of the plant by making measurements with the plant set up in 
a pair of classical spring-mass configurations.  
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1. Background Theory 

 
 
 
 
 
 
 
This Experiment has no 
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Experimental work  
 
Obtain a set of masses, springs, tools and the lab manual from your tutor. (Make sure you return 
all of these at the end of the session)  
The ECP equipment has three mass carriages. For this experiment, only the first two (closest to 
the drive) are used. Ensure that the third mass carriage is clamped securely and will not interfere 
with the other equipment. Check also that the medium stiffness spring (nominally 400 N/m) is 
connecting the first and second mass carriages.  
There are four parts to the experiment (Figure 1 shows the corresponding configurations):  
1. parameters for mass 1,  
2. parameters for mass 2,  
3. parameters for mass 2 with dashpot connected, and  
4. test on a two mass system.  
 
It is recommended that you save data and control configuration files regularly to avoid work loss 
should a system fault occur.  
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• Part 1 - Parameters for mass 1  
 
Carry out the following steps to determine the mass and coefficient of friction for the first mass 
carriage and the spring constant:  

1. Clamp the second mass to put the mechanism in the first of the configurations in Figure 1 
using a shim (e.g. 1/4 inch nut) between the stop tab and stop bumper so as not to engage 
the limit switch  

2.  Secure four 500g masses on the first mass carriage.  
 

3. With the controller powered up, go to Set-up/Control Algorithm and set Ts =0044 . Go 
to Command /Trajectory and select Step, Set-up. Select Open Loop Step and input a step 
size of zero, duration of 3000 ms and 1 repetition. This puts the controller in a mode for 
acquiring 6 sec of data on command but without driving the actuator. Exit to the 
background screen by consecutively selecting OK. This procedure may be repeated later 
to vary the data acquisition period.   
 

4. Go to Data/Set up Data Acquisition and ensure that Encoder #1 is selected as data to 
acquire and specify data sampling every 2 servo cycles (i.e. every 2Ts). Select OK to exit. 
 
Select Utility /Zero Position to zero encoder positions.  
 

5. Go to Command /Execute. Prepare to manually displace the first mass carriage 
approximately 2.5 cm. Exercise caution in displacing the carriage so as not to engage the 
travel limit switch. With the first mass displaced approximately 2.5 cm in either direction, 
select Run from the Execute box and release the mass approximately 1 second later. The 
mass will oscillate and then settle while encoder data is collected to record the response. 
Select OK after the data is uploaded.  
 

6. Go to Plotting /Set-up Plot and choose Encoder #1 Position then select Plot Data from 
the Plotting menu. You will see the time response.  

 
7. The damped frequency can be obtained by measuring the interval between successive 

peaks of the waveform (This is valid for at least the first few large peaks. Smaller peaks 
later are dominated by nonlinear friction effects and do not reflect the salient system 
dynamics). Note that we are using "m11" as a subscript to denote mass #1, trial #1. You 
may “zoom” the plot via Axis Scaling for more precise measurement. Similarly, the 
damping ratio ζm11can be obtained by comparing heights of successive peaks. Natural 
frequency ωnm11can be obtained fromωdm11 and ζm11   
 

߱ௗ௠ଵଵ ൌ ට1 െ 	ζ௠ଵଵ
ଶ 		߱௡௠ଵଵ 

Close the graph window by clicking on the left button in the upper right hand corner of 
the graph. This will collapse the graph to an icon, from where it may later be brought 
back up.  
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8. Remove the four masses from the first mass carriage and repeat steps 3 through 7 to 
obtain ωnm12 , ζm12 , and ωnm12 for the unloaded carriage. If necessary, in step 3, adjust the 
execution (data sampling only in this case)  
 

9. Each brass weight has a mass of 500 ± 10 g. Calling the mass of the four weights 
combined mw , use the following relationships to solve for the unloaded carriage mass 
mc1 , and spring constant : k 

 

 
 

Note that the calculated mass will include the reflected inertias of all connected elements 
such as motor pinion and armature. Finally, the damping coefficient can be found by 
using .  
 

 
 

 
• Part 2 - Parameters for mass 2  
 
The same steps as above should now be carried out for mass carriage 2, with the necessary 
adjustments. Mass carriage 2 will be unclamped and carriage 1 will be clamped as shown in the 
configuration diagram (see Figure 1). Disconnect the dashpot extension bracket from carriage 2. 
Select encoder 2 for data acquisition instead of encoder 1, etc.  
 
Again by measuring ωdm21, ζm21, ωdm22, and, ζm22, obtain mc2,Cm2 and k . The value obtained for 
should be close to that obtained in Part 1. In later work, you may use the average of the two for 
your identified value.  
 
• Part 3 – Coefficient of friction for mass 2 with dashpot  
 
Connect the mass carriage extension bracket and dashpot to the second mass as shown in the 
configuration diagram (see Figure 1). Open the damping (air flow) adjustment knob 2 turns 
(anti-clockwise) from the fully closed position.  
Repeat the relevant steps of Part 2 with four 500 g masses on the second carriage. You may find 
it convenient to reduce the step duration to, say, 1000 ms.  
Hence obtain ζd where the “d” subscript denotes “dashpot”. Note that the damping ratio that you 
measure is the sum of ζ d and ζ m2 that you obtained in Part 2.  
 
• Part 4 – Test of two mass system  
 1. Secure four weights to each of carriages 1 and 2 and unclamp both carriages. The dashpot 
should be connected to carriage 2 at the same setting as in Part 3. Check that the drive 
mechanism is connected.  
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2. In the Command /Trajectory window deselect Unidirectional moves (thereby enabling bi-
directional inputs) and select Step, Set-up. Choose Open Loop Step, and input 2.00 Volts, 75 ms, 
2 reps. (“Step” actually means a square pulse, see p19 of the manual). This has the effect of 
setting up the following input:  
 

 
                                                               Figure 2: Test input  
 
3. Carry out a run via Command /Execute (remember to tick Extended Data Sampling). This 
move may trip a software speed limit or motion travel limit that disables the controller, indicated 
by "Limit Exceeded" in the Controller Status box in the "desk top". To reset, simply reselect 
Execute from the Execute menu.  
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Experiment#7 
 
 
 
 

PD and PID- Linear Plant  
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Introduction 

 
This experiment demonstrates some key concepts associated with proportional plus derivative (PD) control and 
proportional plus integral plus derivative (PID) control. This type of control scheme finds broader application in 
industry than any other. It is employed in such diverse areas as machine tools, automobiles (cruise control), and 
spacecraft (attitude and gimbal control). 

 
The block diagram for forward path PID control of a rigid body is shown in Figure 1(a) where friction is neglected. 
Figure 1(b) shows the case where the derivative term is in the return path. Both implementations are found 
commonly in application and both give rise to the same characteristic roots and therefore have identical stability 
properties but vary in their response to dynamic inputs 
 

 
The Khw appearing in the block diagrams is referred to in the ECP manual as the “hardware gain” (in fact, it includes 

a software component). It accounts for DAC and amplifier gains, encoder gains, software gain factor, etc. It has units 
of N/m; the plant gain has units of m/N – position/force, so the two combined have dimensionless gain 
 

For the first portion of this exercise we shall consider PD control and carry out a test to evaluate Khw . We 

shall then include an integral term in the controller. The closed-loop transfer function for the forward path PID 
control (see Figure 
1(a)) is: 
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In this experiment, we will work with the derivative term in the return path. The closed-loop transfer function in this 
case 
(see Figure 1(b)) is: 

 
 
 
 

Note that the characteristic polynomials are identical in the two cases. In the absence of the integral term (i.e. K I  
 0 ), the transfer function reduces to 

 
 

. 
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Experiment#8 
 
 
 
 
 
Collocated PD Control With 2 DOF Plant 
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In this experiment we consider PD control of a 2-mass system where the controlled output, x1, is 
of the first mass.  Such a scheme is referred to as collocated since the sensor output is rigidly 
coupled to the actuator input.   
 
The addition of the spring and second mass increases the plant order by two and adds an 
oscillatory mode to the plant dynamics.  This may be thought of, in a sense, as a dynamic 
disturbance to rigid body plant studied in other Experiment.  The collocated control implemented 
here may be practically employed when there is flexibility between the actuator and some inertia, 
with the location of objective control being near the actuator.  If the location of objective control 
is at the distant inertia, however, this method has its limitations. 
 
The approach in this experiment will be to design the controller by interactively changing the PD 
gains and observing their effect on the physical system. 
 
 

Procedure : 

1. Set-up the system with four masses on the first and second carriage and with a 
medium stiffness spring (nominally 400 N/m) connecting the two as shown in 
Figure 1d.  I.e. in the same configuration (using the same spring) as was used 
in identifying the transfer function at the end of Experiment #1 without using 
the added dashpot damping. 

2. Implement the critically damped controller in Section before being sure that 
encoder #1 is selected for control.  Set-up data acquisition for encoders 1 & 2 
and for commanded position and gather data every 5 servo cycles.  Execute a 
2000 count step response and plot the result for commanded position and 
encoder #1. Export the data from ECP to MATLAB, and plot the Encoder 1 
data using MATLAB. Be sure to clearly label the plots. To export the data 

         to MATLAB, 

3. Now iteratively adjust the gains kp & kd  and plot results to obtain an improved 
response.  Make your gain adjustments gradually (not more than 50% at a time) 
and note the effects of increasing or reducing each of them.  Do not input kp 
>1.2 or 0.01 < kd > 0.05.  Attempt to achieve performance goals for the first 
mass of ≤ 200 ms rise time (0-90% amplitude) and ≤ 5% overshoot without 
excessive oscillation.  Save your best step response plot.  Gently displace the 
first mass (manually) and note the relative stiffness of the servo system at the 
first mass. 

 

4. For your last iteration in Step 3, plot the step response of the second mass.  
(There is no need to rerun the step, simply re-setup the plot for "encoder #2" & 
"commanded position" and plot data.)  What is the predominant characteristic 
of the second mass motion?  Can you give an explanation for the difference in 
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the responses of the two masses in terms of their closed loop transfer 
functions? 

5. Now using the existing values of kp & kd as starting points, iteratively reduce 
gains and plot x2 results to provide a well-behaved step response with ≤ 10% 
overshoot, without excessive oscillation, and as fast a rise time as possible.  
Save your final plot and record the corresponding gains.  Manually displace the 
first and second masses and note their relative stiffness.  Are they generally 
more or less stiff than for the controller of Step 3?  How does the steady state 
error compare with the high gain controller from Step 3?  Could this error be 
reduced by feedback about x2? 

 

Questions: 

A. Calculate the poles of the closed-loop transfer functions: x(s)/r(s) and x2(s)/r(s) for 
your final controllers in Steps 3 & 5 respectively.  How close to the imaginary axis (& 
right half plane) are the most lightly damped poles in each case?  How close are the 
complex poles of x(s)/r(s) to its zeros in each case?  Explain your answer in terms of 
the root loci for this system for gain ratios of kd/kp = 0.05, 0.10, 0.17, and 0.25. 

B. Calculate the closed loop transfer function in the form: 

    
(1)

 

 Use Nol and Dol to obtain the open loop Nyquist or Bode responses resulting from your 
high and low gain controllers from Steps 3 & 5 respectively.  What are the associated 
phase and gain stability margins?  What are these margins for  x(s)/r(s)?  Explain. 

 

 

 

 
Figure 8.4-1.  Disturbance Forces On PD Controlled 2-DOF Plant 
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Experiment#9 

 
 
 
PD Plus Notch Filter Control 
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In this experiment a control scheme is implemented which first closes the collocated loop with 
simple rate feedback to dampen the oscillatory mode.  Then a notch filter is designed to further 
attenuate the transmission of signals at the damped mode frequency (i.e. nearly canceling the 
poles with a zeros).  Finally, PD control is used to achieve certain performance goals..   
 

Procedure : 

1. The plant studied here is that of the previous exercise, i.e. the one shown in 
Figure 1d but without the dashpot.  Consider the block diagram of Figure 1.  
Use root locus techniques to find the rate feedback gain, kv, that provides the 
satisfactory damping of the complex roots of the inner loop x1(s)/r*(s).  

2. Implement this gain as the f1 coefficient in the General Form controller 
specification box using Ts = 2.652 ms.  Be sure that you select Encoder #1 for 
Feedback Loop #3 before exiting the box and implementing.  Attempt to 
manually excite the oscillatory mode via the second mass and notice the 
damping effect of velocity feedback.   

3. We may now design for the new "plant" G*(s) where N2(s) is as before, and: 

 

  D*(s)   D(s)+ kvsN1(s) (1) 

 

 Design a notch filter, Nn(s)/Dn(s) with two poles at 5.0±5.0i Hz and two 
additional higher frequency poles at 8.0±8.0i Hz14 and with two zeros at the 
poles of D*(s).  Normalize the notch filter transfer function to have unity DC 
gain.15 

 

                                                 
14I.e. with pairs of poles at 7.07 and 11.3 Hz and damping of 70.7% (= ).  The first pole pair is necessary to make 
the filter proper and is placed sufficiently beyond the zero pair in Nn(s) so as not to adversely effect its effectiveness 
in canceling the corresponding poles in Dn(s).  The second pole acts as a cascaded low pass filter to attenuate higher 
frequency noise. 
15For discrete time design, convert your notch filter design to the z domain using the Tustin (bilinear) 

transformation:  

 

 

2

s = 2
Ts

 1 -z-1

1 +z-1
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Figure 1.  Control Structure  

 
4. Select some initial PD gains for control of x2.  Use values of kp = 0.01, kd = 

0.001 initially.  Do not exceed kp = 0.05 and kd = 0.05 in any subsequent run.  
Since this control scheme uses multiple loop feedback, the Executive program 
requires that it be implemented via the general control algorithm form.  A 
short-cut to controller coefficient entry is as follows:  Input your notch filter 
coefficients and proportional controller gain, kp, via the dialog box PID + Notch.  
Be certain to enter these coefficients in the proper order and to high numerical 
precision (e.g. 8 decimal places).  Exit and select Preview In General Form.  You 
will see the P + notch controller in the form that it is implemented in the 
generalized controller form.16   

 
 In the General Form window, enter the f1 coefficient calculated in Step 1 (i.e. 

kv), and enter as i1 the desired derivative gain, kd.  Make sure that Encoder #1 is 
selected for Loop #3 and Encoder #2 is selected for Loops #1&2.  You should 
verify that these entries appropriately represent the control structure of the 
controller in Figure 1.  Exit the box and make sure that General Form is 

                                                 
16r(s) will be the same as Dn(s) and s(s) & t(s) will be identical and equal to kpNn(s).  Upon selecting Preview In 

General Form the algorithm is also converted to discrete time form (by the Tustin transform for Nn and Dn, 
backwards difference for any derivative terms).  In this way the discrete time equivalent controller may be viewed in 
the discrete time General Form controller box. 
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selected; then Implement.  Now check performance of the control using step 
trajectories of 500 - 1000 counts.17 

5. Iteratively change PD gains by repeating Step 4 to obtain performance goals of 
0.4 sec rise time (0-90% of final amplitude) and overshoot less than 15%.  Do 
not exceed kp=0.10 or kd=0.01.  You may notice a trend here that for relatively 
high values of kd the system transmits excessive noise and may appear 
"twitchy".  As kp becomes large, the system becomes oscillatory and further 
increases lead to instability.  Does increase in noncollocated derivative action 
necessarily reduce the step response oscillations? 

6. Record your best performance step response.  Manually displace the masses 
and note the relative static stiffness of the noncollocated (second) carriage 
under this control.   

 

Questions: 

A. Report your calculated values for kv, Nn(s), Dn(s), and your selected values of kp, kd.  
Submit your step response plot.  Does it meet the performance goals of Step 5? 

B. Calculate the closed-loop transfer function x2(s)/r(s) including all elements in the block 
diagram of Figure 1.  You may express this in terms of the polynomials D(s), N1(s), 
Nn(s), etc. rather than expanding each term fully.  Use the equation 

    
(2)

 

 

 and determine the phase and gain margins of your system design via Bode or Nyquist 
plots.  What would happen if you doubled your gains kp and kd?.  What if you 
quadrupled them? 

 

 

 
 
 

                                                 
17Relatively small step sizes may be necessary here to prevent DAC saturation during the initial step response 
transient.  The student may wish to view the control effort during these trials.  Saturation occurs at the maximum 
DAC output of 5.0 V.  

x2(s)
r(s)

 =  
N(s) forward path / Dol(s)

1 + Nol(s)/Dol(s)
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Experiment#10 
 
 
Successive Loop Closure / Pole 
Placement Design For 2 DOF Plant 
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In this experiment we first close a position loop about the collocated (x) position with a 
relatively high bandwidth (close tracking) PD control.  We then make the assumption that the 
first carriage closely follows its internal demand r*(s) so that for designing a controller for x, the 
"plant" is approximated by the transfer function x2(s)/x(s) (i.e. N2/N1(s)).  The block diagram for 
this approach is given in Figure 1  
The design and control implementation in this section proceeds as follows 

1.  High bandwidth PD control of x 
2.  Low pass filter augmentation to attenuate signal noise due to high PD gains 
3.  Outer loop control of x via pole placement methodology  

 
 
10.1  PD Control Of The First Mass Carriage 

Set-up the system with four masses on the first and second carriage and with a 
medium stiffness spring (nominally 400 N/m) connecting the two.  I.e. in the same 
configuration (using the same spring) as the previous experiment. 

PD Control Design & Implementation 

1.    Design the PD control gains such that n = 10 Hz, and  = 0.707 when 
considering only m1 acting as a rigid body. 

2. Set the sampling rate to Ts = 0.002652 seconds and implement your gains via 
the PID control algorithm box.  You may notice some system noise associated 
with the high derivative gain term.  After safety checking the controller  
displace the first and second mass carriages and notice their relative stiffness.  
Discontinue the control via Abort Control. 
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Figure 1.  Control Structure For Successive Loop Closure with High Gain Inner Loop 

 
 

Low Pass Filter Design & Implementation 

3. Solve for the constants af, and bf such the filter has a pole at s = -240 
(approximately 40 Hz) and has unity DC gain. 

4. Calculate the numerator and denominator of the controller associated with the 
cascade of the PD and low pass filter blocks.  These will have the form 

 

 PD*Filter =  (1) 

 

5. In the Generalized Form box, enter the following.   

a. Enter your calculated ei’s and gi’s 

b. Select Encoder #1 for Loop #2. (the other loops may have any encoder 
selected at this point) 

c. Set the following equal to 1:   t0, h0, i0, j0 

d. Verify that r1 = 0.000000218 

e. Verify that all other coefficients = 0 
                                                 
18 This small value is needed to provide a proper transfer function for bilinear transformation and subsequent 
discrete control implementation whenever T/R and S/R are used to implement a differentiator.  Its small value 
results in a pole many decades beyond the system bandwidth and is of no practical implication to system modeling 
or performance.  This coefficient may be set to zero here, but should generally remain. 


–

rr(s)
khwN1(s)

D(s)
–

S (s)
R(s)

 kp + kds

N1(s)

r*(s)
- 1  (through control bandwidth)c(s) =

R (s)
kpfc

x1(s)r*(s) N2(s)

N1(s)

x2(s)
af

s + bf

PD Low Pass
Filter

e0 + e0s
g0 + g1s
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 It is important to take care and assure that all parameters are properly set before 
leaving the Generalized Form dialog box and implementing control. 

6. Exit the dialog box, verify that the Generalized Form button is selected, and 
Implement control.  You should notice a reduction in any audible signal noise 
that may have been present without the low pass filter.  Safety check the 
controller and manually displace the carriages.  They should behave as before 
in Step 2. 

 
 
 
 

10. 2  Pole Placement Control of x2(s)/x(s) 
 
Having closed a relatively high bandwidth (≈10 Hz) loop about the first mass, we utilize the fact 
that the transfer function of Eq. 6.2-5 has near unity input/output gain (and near zero phase) 
through the bandwidth (≈ 2.5 Hz) that we will attempt to attain in the overall control of x2.  Thus 
for the control of x2 we consider the outer loop in the block diagram of Figure 6.6-1. 
 
Now the plant to be controlled is: 
 
 

  (2) 

 
The numerical values of the parameters in this expression were determined in Experiment #1. 
 
We now seek to find a controller S(s)/R(s) which will result in a prescribed set of closed loop 
poles.  The closed loop denominator will have the form: 
 
 
  (3) 
 
 
which may be expressed as19 
 
  (4) 
 
where the di's and ni's are the respective coefficients of the denominator and numerator of the 
right hand side of Eq. (2).  Their values are known from the plant model  

                                                 
19The notation here is the obvious one. 

x2(s)
x1(s)

  = N2
N1

  =


 
N *(s)

D*(s)

Dcl(s) = D*(s)R(s) + N *(s)S(s)

Dcl(s) = (d2s2 +d1s +d0)(r1s +r0) + (n0)(s1s +s0)
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By linear system theory, for coprime N*(s), D*(s) with N*(s)/D*(s) proper, there exists an (n-1)th 
order S(s), R(s) which when convolved as per Eq. (6.6-3) form an arbitrary (2n-1)th order Dcl(s) 
where n is the order of D*(s). 
 
Here we shall solve for the desired denominator: 
 
 

  (5) 
 
 
I.e. closed loop poles at -2.5, and -1.77± j1.77 Hz.20 

 

Pole Placement Design 

7. Determine the coefficients of the controller polynomials S(s) and R(s) by 
equating coefficients in the expanded forms of Eq's 4 and 5.   

8. Calculate the scalar prefilter gain kpf by referring to Figure 1.  The goal is to 
have the output x2(s) scaled equal to the input rr(s).  Hint:  Consider the system 
in static equilibrium.  Set x2 =1 and rr = 1 and solve for kpf using only the 
constant terms in all control blocks. 

Control Implementation 

9. In the Executive program, set-up to collect Encoder #1', Encoder #2 and 
Commanded Position information21 via Set-up Data Acquisition with data sampling 
every two sample periods.  Setup a closed loop step trajectory of 2500 counts, 
2000 ms duration and 1 repetition.  

10. Return to the General Form Algorithm box and verify that the PD controller, low 
pass filter and all other coefficients are entered as given in Step 5 above.  Enter 
the coefficients for S(s) and R(s) determined in Step 7.  Enter the value kpf 
calculated in Step 8 as to.  Make sure that Encoder #2 is selected for Loop #1 
and Encoder #1 for Loop #2.  Select OK to exit to the controller selection 
dialog box.  

11. While staying clear of the mechanism select Implement Algorithm.  If the 
mechanism reacts violently you have implemented an unstable controller or 
otherwise improperly entered the control coefficients and you will need to 
repeat the above steps as appropriate.  You should first Reset Controller (Utilities 
menu) before attempting to re-implement control.  If the system is well 
behaved, and after safety checking the controller, you may disturb the mass 
carriages lightly.  Notice the relative stiffness of the two carriages and how the 

                                                 
20 This has poles of magnitude |s| = 2.5 Hz that lie at 135, 180, and 225 deg. It is similar to a third order Butterworth 
polynomial but somewhat more damped. 
21You may also select Control Effort if you wish to later observe this value . 

Dcl(s) = s+5 
(1+j)

2
s+5 

(1-j)
2

s+5
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first carriage moves in opposition to (i.e. regulation of) disturbances of the 
second carriage.   

 You may notice some "twitching" or buzzing due to noise in the system.  This 
often occurs in such high gain systems, but has been mitigated via the low pass 
filter.  If the noise is excessive or there is any possibility that the equipment is 
at risk discontinue control immediately. 

12. Execute the Step input previously programmed, and plot the Encoder 1, 
Encoder #2, and Commanded Position data.  Save your plot.  How does the 
response at x2 compare with designs previously tested?  Describe the motion of 
x and how it shapes the response at x2. 

 

Questions: 

A. Report your calculated values for kp, kd, af, bf, e0, e1, g0, g1, s0, s1 , r0, r1, & kpf 

B. Determine an expression for the closed-loop transfer function x2(s)/rr(s) including all 
elements in the block diagram of Figure 6.6-1.  You may express this in terms of the 
polynomials D(s), N1(s), R(s), etc. rather than expanding each term fully.  Determine 
x2(s)/rr(s) using the assumption c(s)=1.  Compare the simulated frequency response of the 
full and reduced order transfer functions.  In which regions are the two similar in 
magnitude and phase and in which are they different?  Are they similar throughout the 
final system closed loop bandwidth?  Is the assumption of unity gain in c(s) valid for the 
purposes here? 
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Experiment#11 
 
 
 
 

Inverted Pendulum 
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This unique ECP design vividly demonstrates the need for and effectiveness of closed loop 
control. It is not the conventional rod-on-cart inverted pendulum, but rather, it steers a horizontal 
balancing rod in the presence of gravity to control the vertical pendulum rod. As detailed in the 
manual, the plant has both right half plane poles and zeros as well as kinematic and 
gravitationally coupled nonlinearities. By adjusting mass properties, these roots may be varied to 
make the control problem range from being relatively simple to theoretically impossible! The 
system includes removable and adjustable moment arm counterweights on the vertical and 
horizontal rods for quick adjustment of the plant dynamics. It features 
linear and rotary ball bearings at the joints for low friction and consistent dynamic properties. 
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An inverted pendulum is a classic control problem. The process is non linear and unstable 
with one input signal and several output signals. The aim is to balance a pendulum vertically 
on a motor driven wagon. The following figure shows an inverted pendulum. The aim is to 
move the wagon along the x direction to a desired point without the pendulum falling. The 
wagon is driven by DC motor, which is controlled by a controller (analog in our 
implementation). The wagons x position (not in our case) and the pendulum angle è are 
measured and supplied to the control system. A disturbance force, FDISTURBANCE, can be 
applied on top of the pendulum. 

 

Back ground  
This Experiment provides time domain expressions which are useful for nonlinear plant 
modeling and Laplace domain expressions useful for linear control implementation.  These are 
used in the experiments described later in this manual.   

 
11.1 Equations of Motion 

 
11.1.1  Nonlinear Expressions 

Neglecting friction effects, the plant may be modeled as shown in Fig. 7.1-122.  From the figure 
we have that the system kinetic energy, T(s) is: 

 
T = 1

2
m1vcg1

2 +1
2

J1
2
+1

2
m2vcg2

2 +1
2

J2
2

 (11.1-1) 

 

                                                 
22The force F(t) shown in the figure is equivalent to the motor torque divided by the drive pulley / belt contact 
radius. 
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Figure 11.1-1  Plant Model Descriptions 
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where the vcg's are the inertial velocities of the respective members' centers of gravity (c.g's) (see 

Fig. 11.1-1b) and the Ji's are the polar moments of inertia about the respective c.g's.  The 

members are kinematically constrained so that: 

 vcg1  = x +  x lm1  (11.1-2) 

 vcg2  = lc (11.1-3) 

where the underscored quantities are treated as vectors and "x" is the vector cross product.  By 

resolving unto the u1 and u2 components and squaring, it is readily shown that: 

 

 vcg1
2  = x2 + lm1

2
+ 2 lm1x cos  (11.1-4) 

Substituting Eq's 7.1-3,-4 into 7.1-1 and using:  lm12 = lo2+x2 and cos  = lo/lm1 yields: 

 

 
T = 1

2
J1 +J2 + m1 lo2 +x2 + m2lc2 

2
+ 1

2
m1x2 + m1lox  

 
= 1

2
Jo(x)

2
+ 1

2
m1x2 + m1lox (11.1-5) 

where 

 Jo(x) = J1 +J2 + m1 lo2 +x2 + m2lc2 (11.1-6) 

is the system moment of inertia about O. 

 

The potential energy, V, taken with the datum at {=90o, x=0} is: 

 V = m1 glm1 cos(+) + m2 glccos  

  = m1 glm1 cos cos - sinsin  + m2 glccos 

 = m1 g lo cos -xsin  + m2 glccos (11.1-7) 

 

To obtain the equations of motion, we use Lagrange's equation in the form: 

 



t

T

qi
 - 
T

qi

 + 
V

qi

 = Qi

 (11.1-8) 
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where qi is the ith generalized coordinate, and Qi is the associated generalized force23.  Choosing 

q1=x, q2=, we have: 

 m1x+m1lo - m1x
2
- m1gsin  = F(t) (11.1-9) 

 m1lox+ Jo+2m1xx  - (m1l0+ m2lc)gsin  - m1gxcos  = 0 (11.1-10) 

 

These equations are useful for nonlinear system design and analysis.  For example, when linear 

control is implemented based on a linearized plant model, the system time response with the full-

term (nonlinear) and linearized plants may be simulated to evaluate the range of validity of the 

linear approximation.  The simulation with nonlinear plant model may then be compared with 

actual test results on the ECP system to see the effects of further unmodeled and non-ideal 

dynamic behavior.24 

 

 
7.1.2  Linearization About Equilibrium 

The equilibrium points x=xe, =e, may be found from Eq's 11-8 & -9 by solving for the 

motionless system (x=x===0) when F(t) = 0.  These are readily obtained as:25 

 

 e = 0, xe = 0 (11.1-11) 

 

A linearized approximation of the system may be found via the first two (zeroeth and first order) 

terms of the Taylor's series expansion about the equilibrium points26.  This results in: 

                                                 
23The Qi's may be found using the definition of virtual work, Wi:  i.e. Wi = Qi qi.  In this case, the only external 

force acting on the system is F(t) which acts linearly in the positive x direction and is independent of x and , i.e. 
W1 = F(t)x, W2 = 0. 
24While ECP systems follow their dynamic models quite closely, virtually any physical systems' behavior is more 
complex than our mathematical models of it.  Characteristics not accounted for in this analysis include Coulomb 
friction at the belt drive, bearings, and motor brushes; motor torque ripple; quantization of the encoder signals and 
signal processing; and saturation of the digital-to-analog converter when the control effort signal becomes excessive.  
Useful models may be built however without accounting for all such effects.  It is the essence of control modeling to 
establish a plant model of minimal order (complexity) to describe the salient dynamics through the intended control 
bandwidth. 
25An additional solution exists at e = 180o, but as the physical system is constrained to preclude this position, it 
shall not be considered here. 
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 m1x+m1lo - m1g  = F(t) (11.1-12) 

 m1lox+ Joe  - (m1l0+ m2lc)g  - m1gx = 0 (11.1-13) 

where: 

 
Joe = Jox=xe

=e  

 
7.1.3 State Space Realization 
 
Isolating the second derivative terms in equations 7.1-12,-13 we have: 
 

 
Joe-m1lo2 x + m1logx - Joe - m1lo2 -m2lolc g  = 

F(t)Joe

m1  (11.1-14) 

 Joe-m1lo2  - m1gx -m2lcg  = -F(t)lo (11.1-15) 
 
 
By inspection, a state space realization of the linearized plant is: 
 

 
x = Ax + BF(t)

Y= Cx  
(11.1-16)

 
where: 
 

 

x 





x

x

 ,      A = 

0     1    0    0   

m2lcg/J* 0 m1 g/J* 0

0 0 0 1

J* -m2lolc  g/J* 0   -m1log/J* 0

 ,

 
 

 

B = 1
J*

 

0
-lo
0

Joe/m1

,         C = 

C  0 

0 C2 0 

0 0 C3 0

0 0 0 C4  
  
and 

 J* = Joe-m1lo2  (11.1-17) 

                                                                                                                                                             

26I.e. for our variable set: 
(•) x=xe

=e
 + x



x
 (•)

x=xe
+




 (•)

=e
 where (•) is Eq. 5.1-9 or -10.  In this case, the 

result is the same as setting all squared and cross terms equal to zero, sin equal to , and cos equal to 1.   
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. 

 
11.1.4 Transfer Function 

By Laplace transform of Eq. (7.1-13) and assuming zero valued initial conditions it is 

straightforward to express  

 

 

(s)
x(s)

  = m1lo
Joe

  
-s2+ g/lo

s2- m1lo+m2lc g/Joe  (11.1-18) 

which when substituted into Eq. (7.1-12) leads to: 

 

(s)
F(s)

  = lo
J*

  
-s2+ g/lo

s4+ m1lo-m2lc g/J* s2 - m1g2/J*
 (11.1-19) 

 

The first of the above transfer functions relates the motion of the nominally vertical (or 
pendulum) rod to the motion of the sliding rod and the second relates pendulum rod motion to 
the force acting on the sliding rod via the drive belt.  It is the motion of the pendulum rod (i.e. ) 
that is to be controlled in the experiments that follow. 

The linearized relationship between the applied force and the sliding rod position follows from 
the product of Eq.(7.1-19) and the inverse of Eq. (7.1-18): 
 

 

x(s)
F(s)

  = 
Joe

m1J
*
  

s2- m1lo+m2lc g/Joe

s4+ m1lo-m2lc g/J* s2 - m1g2/J*
 (11.1-20) 

 
 
 
 
7.2 Effect Of Mass Properties & Geometry On Plant Dynamics 
 
From inspection of Eq. 11.1-19, it is readily seen that the transfer function of the linearized plant 
has one right half plane (RHP) zero and at least one RHP pole.  Thus the open loop system is 
both nonminimum phase and unstable.  As will be discussed later, these characteristics have 
strong implications to the attainable performance and stability of any subsequent closed loop 
design.  In particular, the nonminimum phase zero sets an upper limit to the achievable system 
bandwidth, and the unstable pole sets a lower limit.  These properties are discussed in more 
detail in Appendix A.  The effects of various dynamic parameters on the values of the plant 
transfer function roots are described in this section. 
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11.2.1 Distribution And Effect Of Zeros 
 
From Eq 7.1-19, the zeros lie at: 
 

 z =  g/lo  (11.2-1) 
 
Thus for the experimental plant the zeros are fixed since the pendulum rod length, lo, is not 

changeable.  From the discussions of Appendix A, the lower the "frequency" (magnitude) of the 

RHP zero, the lower the maximum attainable closed loop bandwidth, and hence performance.  

From the Appendix, for practical control implementation, we would not expect to attain closed 
loop bandwidths greater than about (g/lo)1/2 or 1.2 Hz for our particular geometry. 
 
 
11.2.2 Distribution And Effect Of Poles 
In order to gain insight as to the effect of mass properties on the distribution of the poles, 
consider the following notation: 
 

 a  =   m1lo - m2lc  / J*
 (11.2-2) 

 

 b = m1 / J* (11.2-3) 
 

 k = lo / J* (11.2-4) 
 
Note that since: 

 J* = Joe- m1lo2 = J1+J2+m2lc2  (>0) (11.2-5) 
 
 
b>0 and k>0.  Equation 11.1-19 may then be expressed as: 
 
 

 

(s)
F(s)

  =  
-k s2 + g/lo

s4 + ags2 - bg2  
(11.2-6)

 
or: 

 

(s)
F(s)

  =  
-k s2 + g/lo

s2-p1g  s2-p2g  
(11.2-7) 

 

where: 
p1 = -a + a2 +4b

2
    (>0)

 
(11.2-8)
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p2 = -a - a2 +4b

2
    (<0)

 
(11.2-9)

 

Equations 7.2-7,8,&9 show that their are two real poles at  p1
 g  and two imaginary poles at 

 i p2
 g.  Two possible pole-zero distributions are shown in Figure 7.2-1. 

 

o x

x

ox

x

a)  | Real Poles | >  | Zeros | b)  | Real Poles | <  | Zeros | 

ox

x

o x

x

Im Im

Re Re

 
Figure 11.2-1.  Possible Pole-Zero Distributions 

 

According to Eq's 7.2-1,-7,&-8, the distribution of Figure 7.2-1a  implies that: 

 

 
 -a + a2 +4b

2
  > 1

lo  (11.2-10) 
 
It is relatively straightforward to show that this holds if and only if: 
 

 J* < m2lclo (11.2-11) 
 

Similarly, the distribution of Fig. 7.2-1b implies that: 
 

 J* > m2lclo (11.2-12) 
 
Eq. 7.2-11 is equivalent to the condition that J1+J2+m2(lc)2 < m2lclo.  This in turn requires that J1 
and J2 be small and lc be small relative to lo.  It can be shown that for the range of available 
parameters, this condition is never realized in the experimental system.  Therefore, all pole-zero 
distributions are as shown in Figure 7.2-1b.  Note also from Eq’s 7.2-8,-9 that the magnitude 
(frequency) of the imaginary poles is always greater than the real poles. 
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For the experimental system, the masses m1 and m2 may be changed discretely by adding or 
removing the appropriate brass weights and by changing the distance of the balance weight along 
the lead screw from the pivot.  The effect of these changes is shown in Figure 6.2-2.  From the 
discussions of Appendix A, the lower the frequency of the unstable pole, the less difficult it is to 
stabilize the system under closed loop control.  As seen in the Figure, stabilizing the system 
becomes less difficult when the balance masses are added, when they are moved as far 
downward as possible,27 and when the "donut" weights on the sliding rod are removed.28   

The case where both balance masses are removed altogether is nearly identical to the left most 
points on the curves of Figure 6.2-2a.   
 

                                                 
27This result is rather intuitive – as the system cg. moves downward and below the pivot, the system would appear 
to become similar to an ordinary (non inverted) pendulum.  Note from the transfer function denominator that the 
system never becomes stable even for large negative values of the product m2lc.  This somewhat non intuitive result 
may be visualized by considering small static perturbations about the equilibrium.  If for example the pendulum is 
moved slightly in the clockwise direction, the sliding rod will tend to move toward the right thereby causing further 
clockwise pendulum displacement. Thus the equilibrium is unstable.  It may be demonstrated on the experimental 
system however that in such cases, relatively small amounts of friction result in a stable equilibrium.   

Note that in the (s)/x(s) (Eq. 5.1-18) case however the transfer function becomes stable for sufficiently large 
negative values of m2lc. 

28Removing the "donut" weights however reduces the available control authority (e.g. smaller attainable range in ). 
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Figure 11.2-2a.  Effect of Changing Plant Mass Properties  - Two Balance Masses 

 
 
11.2.3  Mass Property Determination. 
 
Both the nonlinear  and linearized time domain equations of motion and the transfer function  are 
fully specified by the parameters m1, m2, lo, lc, and J*.  For the experimental pendulum (and for a 
given set of attached brass weights), the parameters m1, m2 and lo are fixed and known.  The 
parameters lc, and J* however depend on the location of the movable brass counter-mass.  Define 
lco and m2o to be the value of lc and m2 respectively when the counter-mass, mw2, (both brass 
weights) is removed.  Then the parameter lc is found from a simple center of mass calculation, 
i.e.:   
 

 
lc = 

mw2lw2 +m20lco

m2  (11.2-13) 
 
where lw2 is the distance (signed) from the pivot to the center of mw2. 
In our case, the parameters lco and m2o are also fixed and known so that determination of lc is 

straightforward.  The remaining parameter J* is found experimentally29 as described in Chapter 6

                                                 
29More precisely, we will find Joe and then obtain Jo

*
 via Eq. 5.1-17. 
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This chapter outlines experiments which identify the plant parameters, implement several control 
schemes, and demonstrate important control principles.  The versatility of this software / 
hardware system allows for a broader range of experimental uses than will be described here and 
the user is encouraged to explore whatever topics and methodologies may be of interest – subject 
of course to your school and laboratory guidelines and the safety notations of this manual.  The 
safety portion of this manual, experiment 1, must be read and understood by any user prior to 
operating this equipment. 

The instructions in this chapter begin at a high level of detail so that they may be followed 
without a great deal of familiarity with the PC system interface and become more abbreviated in 
details of system operation as the chapter progresses.  To become more familiar with these 
operations, it is strongly recommended that the user read Chapter 2 prior to undertaking the 
operations described here.  Remember here, as always, it is recommended to save data and 
control configuration files regularly to avoid undue work loss should a system fault occur. 

 

System	Identification	
  

It is necessary to identify pertinent dynamic and scaling parameters in order to design and 
implement controllers which stabilize the inverted pendulum plant and allow it to track set-points 
in angular displacement.  In Section 6.1 the nonlinear dynamical equations of the plant were 
derived.  A linearized model of the plant dynamics was also presented in both state-space form 
and transfer function form.  The linearized model can be shown to be an adequate representation 
in many cases for the purpose of linear control design and implementation (e.g. the controller 
used as the default controller in Section 3.2 uses a linear controller designed based upon this 
linearized model). It is recognized that not all parameters may be measured with a fully 
assembled pendulum.  As result, Table 11.1-1 below shows the parameters which are fixed.  
Their nominal values have been measured prior to assembly: 
 



 

91 
Dr. Rad 
Revise 6/2016  

Table 11.1-1.  Mass Property Values 

Parameter Value Description 

Lo 0.330 (m) Length of pendulum rod from pivot to the sliding rod T section 

m1 TBD† (kg) Mass of the complete sliding rod including all attached elements.

m1o 0.103 (kg) Mass of the sliding rod with belt, belt clamps, and rubber end 
guards (but without sliding rod brass "donut" weights) 

mw1 0.110 (kg) Combined mass of both of the sliding rod brass "donut" weights 
(=0 if not used) 

m2 TBD (kg) Mass of the complete assembly minus m1 

mw2 1.000 (kg) 

(÷2 if only 
one weight 

used) 

Mass of brass balance weight 

m2o 0.785 (kg) Mass of the complete moving assembly minus m1 and mw2 

Lco 0.071 (m) Position of c.g. of the complete pendulum assembly with the 
sliding rod and balance weight removed 

Jo
*  0.0246 (kg-m2) [Joe-m1lo2] evaluated when mw2=0. 

†To be determined 
 

From the definitions in the table we have: 
 
 m1 = m1o + mw1 (11.1-1) 

 m2 = m2o + mw2 (11.1-2) 
 
The parameter  
 

lw2  =

   signed distance from pivot to c.g. of balance mass (mw2) 

 
 
is changeable by the user and is readily measured.  That is, referring to Figure 7.1-1,  
 

 
lw2  =  - 

t+lt +lb
2  (11.1-3) 

 
 

 
The three remaining parameters – J*,Joe, and lc – are derived from the above as follows: 
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lc = 

mw2lw2 +m20lco

m2  (11.2-13) 

                                              Joe = Jo
* + mllo2 + mw2 lw2

2
                                  (11.1-4) 

 J* = Joe-m1lo2  (11.1-17) 

 

DC servo
motor

High resolution
encoder

Counter
mass

ltlb

t

 
Figure 11.3-1  Measurement of lw2 

 

Plant Configurations For Control Experimentation. 

The experiments that follow in this manual use two distinct physical setups and corresponding 
parameter sets for their models.  In each case both "donut" weights are used for the sliding rod 
and both balance masses are used .  For the first case, "Plant #1", lt = 10.0 cm, and for the second 
("Plant #2") lt = 7.0 cm, . 

Based upon the above information you should now be able to calculate the numerical values of 
the linearized plant parameters as given by Eq’s 11.1-18, -19, and -20 .  Calculate these values 
for each plant case.  Calculate the roots of the transfer function Eq 11.1-19 and show that the real 
poles and zeros are mirror images about the imaginary axis on the s-plane and that there is also 
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an imaginary pole pair.  Show that the poles of Eq. 11.1-18 are imaginary for plant #1 and are 
real and opposite for plant #2.30   

 Now we can use the numerical value of plant transfer function or state space model to design 
controllers.  However to actually implement them we need four scaling parameters which are 
associated with the amplifier/actuator, the two sensors (encoders) and the controller firmware.  
With reference to the block diagram of Figure 11.3-2, these four scale factors (gains) are as 
shown in Table 11.1-2 where c and xc are the respective values of  and x in units of encoder 
counts.31   

Now, all of the above parameters are fixed.  The value of kf is factory set and will not change 
unless the amplifier analog gains are changed.  The value of kx comes from the fact that encoder 
2 generates 2000 counts per revolution which translates to approximately 50,000 counts per one 
meter travel of the sliding rod.  Similarly, ka is reflects the 16,000 counts per rev. resolution of 
encoder 1.  The value of ks is fixed by the firmware within the real-time control card. 

Construct the properly scaled plant models (with variables c and xc  and control force Fc) in 
both transfer function and state space form (i.e. Eq's 11.1-16, -18, -19, and -20) by using the 
following substitutions.32 

 

  = c / (ks ka) (11.1-5) 

 x = xc / (ks kx) (11.1-6) 

 F = Fc kf (11.1-7) 

 

 

                                                 
30In Plant #1, the system c.g. – given by (m1lo+m2lc)/(m1+m2) – is below the pivot and according to Eq. 5.1-17 
results in imaginary poles.  Hence in the presence of friction it is stable  (for (s)/x(s), not for (s)/F(s)).  For plant 
#2 the system c.g. is above the pivot and hence (s)/x(s) is stable. 
31The control effort gain, kf, is the product of the DAC gain (V/increment), the amplifier gain (amps/V), the motor 

torque constant (N-m/amp) and the inverse of the effective belt pulley radius (m-1).  The "x" variable feedback gain, 
kx, is actually the encoder resolution in counts/radian times the effective belt drive pulley radius in meters.  The "" 
variable feedback gain is the corresponding encoder resolution.   
The controller gain, ks, is part of the controller firmware and multiplies all feedback and command input signals 
prior to their entering the control block (i.e. all inputs to the control law are scaled by 32x).  This is for improved 
numerical resolution in pulse period measurement (to obtain derived rate) which occurs within the controller and is 
transparent to the user..  Note that for display and plotting purposes, the Executive program divides the 
corresponding controller-internal values by 32 so that they appear in the original scaling. 
32 For the transfer function models this scaling process is straightforward.  For the state space plant model however 

the scaling affects both the A and B matrices.  It may best to first express Eq's 5.1-14 and -15 in terms of the 
controller scaled variables and then rewrite the expression Eq. 5.1-16. 
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Table 11.1-2.  Scaling Constants 

Scale 
Factor 

Value Description 

Kf 0.0013 (N / DAC increment) Combined DAC-amplifier-motor-pulley gain (see Sect. 4.3)
Kx 50200 (increment / m) Sliding rod encoder (encoder 2) scale factor 
Ka 2546 (increment / rad) Pendulum angle encoder (encoder 1) scale factor 
Ks 32 (controller or DAC incr../

encoder or demand incr..) 
DSP controller firmware scale factor 

 
 

 

Linearized Plant Model

y = Cx
x = Ax + Buks kf

kx

ka

x



Motor encoder - pulley 

Pivot encoder

Time Domain

Laplace Domain

Control 
Effort

ks kf

Control 
Effort x(s)

F(s)
(s)
x(s)

kx

ka

x 

Motor encoder - pulley 

Pivot encoder

u(s)

u(t)

Linearized Plant Model

xc

c

xc

c

Controller

Controller

 

Figure 11.3-2 Plant Block Diagram With Scale Factors 
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11.3.1 Confirmation of ka and kx 

These two scale factors can be easily confirmed via a simple procedure using the Executive 
program 

 
Procedure 

1. Remove the power cord from the control box but have all other cables connected.  Position 
the pendulum rod to the right and the sliding rod to the far right at the limit of travel.  Enter 
the Executive program. 

2. Select Zero Position in the Utility menu.  You should see the position of Encoder 1 and Encoder 
2 to be approximately zero. 

3 Hold on to the pendulum rod and push the sliding rod from one end until it hits the opposite 
end of its travel (hits the right limit switch).  Now record the number of counts moved by 
encoder 2  on the Background Screen.  With a ruler, measure the distance in meters that the 
sliding rod has traveled from one limit switch to the other.  The ratio of the two is the value 
of kx. 

4. Now move the pendulum rod in the anti-clockwise direction all the way to the left.  Record 
the number of counts moved by encoder 1 on the Background Screen.  Measure the angle of 
rotation in radians, the ratio of the two is the value of ka. 

 
 
 

11.3.2   Confirmation of Jo
*  

The following procedure may be used to confirm the value of Jo
*  from which J* and Joe are 

obtained via Eq's 11.1-4 and 11.1-17 
 
Procedure: 
 

1.  Remove the brass balance weights from the apparatus and install both "donut" weights on 
the sliding rod.  Use a rubber band to restrain the sliding rod in its center of travel as shown 
in Figure 11.3-2. 

2.  Disconnect the power cord from the control box but leave the other cables connected.  (This 
allows the encoder signals to pass to the control card but precludes accidental driving of the 
motor.)  Very carefully position the entire pendulum mechanism up-side down on two 
coplanar flat surfaces such that the pendulum rod is free to rotate as a non-inverted (regular) 
pendulum. (E.g. two tables side-by-side with approx. 8 in. gap between.  It is recommended 
that a piece of cloth or other soft material be placed between the mechanism and the table on 
each side to avoid scratching.)  
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Use rubber band to 
restrain sliding rod in 
center position

 

Figure 11.3-2.  Securing Sliding rod For Jo
*

 Measurement via Pendulum Frequency 

3. With the controller powered up , enter the Control Algorithm box via the Set-up menu and set Ts 
= 0.00442.  Go to Set up Data Acquisition in the Data menu and select encoder #1 as data to 
acquire and specify data sampling every 5 servo cycles  (i.e. every 5 Ts's).  Select OK to exit.  
With the pendulum hanging freely under gravity, select Zero Position from the Utility menu to 
zero the encoder positions. 

4. Check again that the pendulum rod can freely rotate in this position.  Now select Trajectory in 
the Command menu.  Enter the Step dialog box and click on step-up.  Choosing Open  loop Step, 
input a step size of 0 (zero), a duration of 10000 ms and repetition of 1.  Exit to the 
Background Screen by consecutively selecting OK.  This puts the controller in a mode for 
acquiring 20 sec of data on command but without driving the actuator.  This procedure may 
be repeated and the duration adjusted to vary the data acquisition period. 

5. Select Execute from the Command menu.  Manually displace the pendulum rod approximately 
20 deg.  from vertical and let go.  You should notice that the "non-inverted" pendulum rod 
will oscillate and slowly attenuate while the encoder data is collected to record this 
response.  Select OK after data is uploaded. 

6. Select Set-up Plot from the Plotting menu and choose encoder #1 position; then select Plot Data 
from the Plotting menu.  You should see the pendulum rod angle encoder response similar to 
one shown in Figure 7.1-2. 
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Figure 11.3-2 Determination of Jo

*  via Pendulum Period Measurement 

7. Measure the period of oscillation, T, in seconds by taking the time for completion of several 
cycles divided by the number of cycles.  Confirm that its value for the factory default setting 
of the balance weight (all the way down the lead screw but just clearing the pocket hole) is 
approximately 1.25 seconds33.  Use the following classic linearized "non-inverted" equation 
of motion to derive an expression for the inertia J in terms of the measured T. 

 

 J + mlcgg = 0 (11.1-8) 

 where m, J and lcg are the respective mass, inertia, and length to center of gravity (from the 
pivot) of the combined pendulum elements during the test. 

 

8. Calculate the values of m and lcg for the test case and hence obtain J from your derived 

expression.  (Note that J here is the same as Joe of this manual's notation)  Now determine Jo
*  

according to Jo
*

 = J-m1lo2 and hence verify the value shown in Table 11.1-1. 

9. Carefully re-orient the mechanism to the regular "inverted pendulum" position (up-side up) 
and reconnect the power cord to the control box.  (Make certain that the control box is 

turned off however.)  This concludes the confirmation procedure for J*. 
 

 
From the above exercises all plant parameters and scaling constants have been found or verified.   
 
 
 
 
 
 
                                                 
33For more accurate measurement, you may use tabular data via Export Raw Data in the Data menu to export data to a 
text editor where precise numerical values may be read. 
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Experiment # 12 
 
 
 
 

PD Control Of The Sliding Rod 
 
 
 
 
 
 
 
 
 



 

99 
Dr. Rad 
Revise 6/2016  

In this experiment we first close the loop about the "x" position with a relatively high bandwidth 
(close tracking) PD control.  We then make the assumption that the sliding rod closely follows its 
internal demand ux so that for designing a controller for , the "plant" is approximated by the 
transfer function c(s)/xc(s).  The block diagram for this approach is given in Figure 12.2-3. 
 
 
12.2.1  PD Control Of The Sliding Rod 
 
A simplified dynamical model of the relationship between the sliding rod and the applied force, 
F when the plant is at the equilibrium position is shown in Figure 6.2-1.  Here the inertia of the 
pendulum assembly is shown as an equivalent mass m2* at the sliding rod interface according to: 
 
 m2* = J* / lo2 (12.2-1) 
 

x(t)

x2(t)

m1

m2
*

F(t)

 
Figure 12.2-1   Simplified Model Of Sliding Rod Dynamics When Plant Is At Equilibrium 

 
 

The reader should verify that the following relationship holds for the motion x(t): 

 
 F(t) = m* x (12.2-2) 
 
where 
 

 
m* = 

m1m2
*

m1 + m2
*
 (12.2-3) 
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Thus the reduced dynamics are that of a simple rigid body.  For our particular plant, the 
corresponding transfer function in controller units is: 

 

 

xc(s)
Fc(s)

 = khw

m1
* s2  (12.2-4) 

 
where 
 

 khw =  kxkskf (12.2-5) 
 

The block diagram of the proportional plus derivative (PD) control of a rigid body is shown in 
Figure 12.2-2 and has the closed loop transfer function:34 
 

 
c(s) =  

x(s)
r(s)

 = 
khw/m1

* kds+kp

s2 + khw/m1
* kds+kp  (12.2-6)

 

 

Controller

khw

Hardware
Gain


–

r(s)

Plant

x(s)

Reference
input

Sliding rod
position relative
to pendulum rod

end

kp + kds
1

m* s2

 
Figure 12.2-2.  Rigid Body PID Control – Control Block Diagram 

 

By defining: 
n =  

kpkhw

m*

 (12.2-7) 
 

 
 =  kdkhw

2m* n
 = kdkhw

2 m*kpkhw  (12.2-8) 
 
we may express:

 

                                                 
34Here we omit the subscript "c" since xc(s)/rc(s) = x(s)/r(s). 
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c(s) = 

2ns  +n
2

s2 +2ns  +n
2
 

(12.2-9) 

 

Here n is the natural frequency and  is the damping ratio of the closed loop system x(s)/F(s). 

 

Procedure : 

PD Control 

1. Using the results of Section 11.1 for Plant #1 determine the values of the 
parameters khw and m1* . 

2. Using Equations 12.2-7 and -8, determine values of the control parameters kp 
and kd to provide a closed loop natural frequency of 10 Hz (63 rad/s) and 
damping ratio of 1 (critically damped).  Note: if you obtain 0.15 < kp < 0.35 or 
0.004 < kd < 0.012 you should check and correct your calculations. 

3. Adjust the position of the balance masses to lt = 10.0 cm( see Figure 11.3-1) 
being sure to secure them on the threaded rod by counter rotating them.  Verify 
that the donut weights are in place and secure on the sliding rod.   Hence place 
the apparatus in the Plant #1 configuration. 

4. In the Executive program, set-up to collect Encoder #2 and Commanded Position 
information via the Set-up Data Acquisition box in the Data menu with data 
sampling every two sample periods.  Enter the Command menu, go to Trajectory 
and select Step, Set-up.  Select Closed Loop Step and input a step size of 1000 
counts, a duration of 1000 ms and 1 repetition.  Exit to the Background Screen 
by consecutively selecting OK.  This puts the controller board firmware in a 
mode to command a 1000 count step move (about 2 cm.) forward and back 
with a one second dwell.  

5. Enter the Control Algorithm box under Set-up and set Ts=0.00442 s and select 
Continuous Time Control.  Select PID and Set-up Algorithm.  Enter the kp and kd values 
(ki = 0) determined in step 2 (again, do not enter values outside of the ranges 
0.15 < kp < 0.35 or 0.004 < kd < 0.012) and select Encoder #2 for feedback, 
then OK.   

 Orient the mechanism with the sliding rod in its approximate middle of travel 
so that the pendulum rod is approximately vertical.  In this and all future work, 
be sure to stay clear of the mechanism before doing the next step.  Selecting 
Implement Algorithm immediately implements the specified controller; if there is 
an instability or large control signal35, the plant may react violently.  If the 
system appears stable after implementing the controller, first displace it with a 
light, non sharp object (e.g. a plastic ruler) to verify stability prior to touching 

                                                 
35E.g. a large error at the time of implementation. 
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plant.  AT ALL TIMES KEEP HEAD AND ESPECIALLY EYES WELL 
CLEAR OF THE APPARATUS 

 Select Implement Algorithm, then OK.   

6. Enter Execute under Command and – again staying clear of the apparatus –select 
Run.  You should see the sliding rod move rapidly about 2 cm back and forth 
while the pendulum rod swings due to the reactive force. 

7. Plot encoder #2 output and commanded position, both on the left axis (see step 
6, Section 11.1.2).  You should see a critically damped response with 90% rise 
time of approximately 60 ms.  Print your plot via Print Data under the Plotting 
menu. 

 
 
 
 
12.2.2  Pole Placement Control of (s)/x(s) 
 
Having closed a relatively high bandwidth (≈10 Hz) loop about the sliding rod position we 
utilize the fact that the transfer function of Eq. 12.2-9 has near unity input/output gain (and near 
zero phase) through the bandwidth (≈ 0.75 Hz) that we will attempt to attain in the overall 
control of .  Thus for the control of  we consider the block diagram of Figure 12.2-3.36 
 
 

                                                 
36Note again that /r = qc/rc. 
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
–

rc(s) c(s)xc(s)

Fc(s)
–

S (s)
R(s)

 kp + kds c(s)

xc(s)

xc(s)

e*(s)
- 1  (through control bandwidth)c(s) =

R (s)
kpfc

xc(s)e*(s)

 
Figure 12.2-3.  Control Structure For Outer Loop Closure 

 
 
Now the plant to be controlled is: 
 
 

 

c(s)
xc(s)

  = kam1lo
kxJoe

  
-s2 + g/lo

s2 - m1lo+m2lc g/Joe

  =


 k*Nax(s)
Dax(s) (12.2-10) 

 
 
where the obvious substitutions are made in obtaining the right hand expression.  The numerical 
values of the parameters in this expression were determined in Experiment #1. 
 
We now seek to find a controller S(s)/R(s) which will result in a prescribed set of closed loop 
poles.  The closed loop denominator will have the form: 
 
 
 Dcl(s) = Dax(s)R(s) + k*Nax(s)S(s) (12.2-11) 
 
 
which may be expressed as37 
 

                                                 
37The notation here  is the obvious one.  The constant k* has been incorporated in the ni's. 
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 Dcl(s) = (d2s2 + d1s+ d0)(r1s+ r0) + (n2s2 + n1s+ n0)(s1s+ s0) (12.2-12) 
 
where the di's and ni's are known from the plant model Eq. 12.2-10 

By linear system theory, for coprime Nax(s), Dax(s) with Nax(s)/Dax(s) proper, there exists an (n-
1)th order S(s), R(s) which when convolved as per Eq. (6.2-11) form an arbitrary (2n-1)th order 
Dcl(s) where n is the order of Dax(s). 
 
Here we shall solve for the desired denominator: 
 
 
 Dcl(s) = (s++j)(s+-j)(s+3) (12.2-13) 
 
 
I.e. closed loop poles at -0.5 ± j0.5 and -1.5 Hz. 
 
 

Procedure : 

Pole Placement Control 

1. Determine the coefficients of the controller polynomials S(s) and R(s) by 
equating coefficients in the expanded forms of Eq's 12.2-12 and 12.2-13.   

2. Calculate the scalar prefilter gain kpfc by referring to Figure 12.2-3 and using 
the scaled variable set c, and xc,.  The goal is to have the output c(s) (or (s)) 
scaled equal to the input rc(s) (or r(s))  Hint:  Consider the system in static 
equilibrium.  Set c =1 and r c= 1; determine the required input xc(s) to the 
plant  c(s) / xc(s) and hence the necessary signal at the left hand input to the 
left most summing junction in Figure 12.2-3. 

4. In the Executive program, set-up to collect Encoder #1, Encoder #2 and Commanded 

Position information38 via Set-up Data Acquisition with data sampling every two 
sample periods.  Enter the Command menu, go to Trajectory and select Step, Set-up.  
Select Closed Loop Step and input a step size of 500 counts, a duration of 
2500 ms and 1 repetition.  Exit to the Background Screen by consecutively 
selecting OK.  This puts the controller board firmware in a mode to command a 
500 count step move (about 11 deg.) forward and back with a 2.5 second dwell.  

5. Enter the Control Algorithm box under Set-up and set39 Ts=0.00884 s and select 
Continuous Time Control.  Select General Form and Set-up Algorithm and enter the kp 
and kd values (ki = 0) from the previous section (Section 12.2.1) as the 
coefficients eo and e1 respectively.  Enter the coefficients for S(s) and R(s) 

                                                 
38You may also select Control Effort if you wish to later observe this value when plotting system responses. 
39The sample period is set higher here than for the PD inner loop to reduce noise propagation in the closed loop 
system.  A filter shall be used for this purpose in later experiments. 
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determined in step1.  Enter the value kpf calculated in step 2 as to in the General 
Form.  Make sure that Encoder #1 is selected for Loop #1 and Encoder #2 for 
Loop #2.  Select OK to exit to the controller selection dialog box.  

6. Always do the following to avoid transients when implementing your 
controller.  Exit to the background screen.  Select Abort Control to make certain 
that the pendulum is safe to touch.  Set the sliding rod at its approximate center 
of travel (pendulum rod approximately vertical).  Check that the controller box 
is powered on and turn on if it is not.  Select Reset Controller from the Utility menu.  
Do not disturb the pendulum.   

7. Reenter the Control Algorithm box and while staying clear of the mechanism select 
Implement Algorithm.  If the pendulum reacts violently you have implemented an 
unstable controller or otherwise improperly entered the control coefficients and 
you will need to repeat the above steps as appropriate.  If the pendulum is well 
behaved you may (again, while staying clear of the pendulum) perturb the 
pendulum rod gently with a long blunt object such as a ruler.  You should see 
the sliding rod move in an attempt to regulate against the disturbance.  You 
may notice some "twitching" or buzzing due to noise in the system.  This is to 
be expected.  The time under closed loop control should be minimized however 
to reduce the stress on the drive components (In the next experiment, a filter is 
designed to reduce the noise.) 

8. Enter Jog Position under Utility and input an absolute jog of -250 counts.  You 
should see the pendulum move clockwise about 5.5 degrees. 

9. Enter Execute under Command and – again staying clear of the apparatus –select 
Run.  You should see the pendulum – actuated by the sliding rod – move 
rapidly about 11 deg back and forth.  Open the loop by selecting "Abort 
Control". 

10. Plot encoder #1 output and commanded position, both on the left axis.  Note 
the initial negative going motion of the pendulum.  This is a time response 
characteristic of nonminimum phase systems.  Print your plot via Print Data 
under the Plotting menu.  Save your control configuration via Save Settings in the 
File menu. 

 
 
 
 

 
 



 

106 
Dr. Rad 
Revise 6/2016  

 
 
 

Experiment # 13 
 

 
 
Low Pass Filter Augmentation Of Controller 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

107 
Dr. Rad 
Revise 6/2016  

 
 
It may have been noticed in the previous experiment that the pendulum appeared to "jitter" or 
"twitch" as a result of quantization noise which is always amplified by numerical differentiation.  
To overcome this problem a low pass filter may be used which should have a break frequency 
much higher than the closed loop bandwidth (so that system stability is not significantly affected) 
and yet low enough to effectively attenuate the noise.  In this section we shall investigate the 
effect of a simple first order lag with unity dc gain. 
 
Procedure 
 

1. Verify that a first order filter represented by the transfer function G(s) = 
1/(s+1) has a low-pass frequency response with bandwidth 1/ (rad/s). 

 

2. Consider the filter given by: 
 

G(s) = 1/(0.008s+1) 
 

 What is the cut-off frequency of this filter and how does its value compare to 
the magnitude of the closed loop poles of the design in the previous section? 

 

3. To implement this filter as a cascade to the output of the control blocks used in 
experiment 7.2, we must use the General Form structure within the Setup Control 

Algorithm Dialog Box.  Enter the ECP Executive program and in Setup Control 

Algorithm, enter the sampling period Ts=0.00176840.  Input control coefficients in 
the General Form box from the design of experiment 7.2 (you may do this 
quickly by uploading your saved configuration from the last experiment via 
Load Settings in the File menu – make sure however that you choose 
Ts=0.001768)  Now input g1= 0.008, g0=1.  This corresponds to the 
implementation of the above first order low pass filter to the output of the 
control action from the PD inner loop (i.e. immediately prior to the control 
signal output from the controller and being put on the DAC).  Now exit the 
General form box and after following the instructions of step 6 of Section 11.2.2 
and staying clear of the mechanism, Implement the algorithm.  You should see a 
considerable reduction in jittering (i.e. numerical noise) from your previous 
controller's operation.  Why should this filter be implemented to the output as 
opposed to the input of the controller?  Remember it is the numerical noise that 
we are trying to attenuate not sensor noise.  Is sensor noise a source of concern 
with optical shaft encoders as used in the pendulum mechanism?  Execute and 
plot a step response as per steps 4, 6,7,8, 9, and 10 of experiment 7.2.2. 

 
                                                 
40This relatively fast sampling rate is used to minimize sampled data effects. 
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4. Repeat the procedures in steps 2 & 3 reducing the time constant of the filter 
progressively (e.g. to 75% of its existing value each time) from 0.008 seconds 
keeping sampling time the same.  You should note that as the time constant 
gets smaller the effect of filter fades away.  Why? 

 

5. Repeat the procedure in steps 2 & 3 increasing the time constant of the filter 
(e.g. by 150%) progressively from 0.008 seconds keeping the sampling time 
the same.  You should notice that as the time constant of the filter gets larger it 
starts to affect the underlying dynamic response by increasing the response 
time to a step input, overshoots and finally instability.  Why? 
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Experiment # 14 
 
 
 
Pole Placement Controller 
For Unstable (s)/x(s) 
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 For Plant #1, the denominator of (s)/x(s) has left half plane roots and is stable41.  The physical 
interpretation is that the system c.g. is below the pivot so that if the sliding rod were fixed, the 
mechanism would behave as an ordinary (noninverted) pendulum.  In Plant #2, however, the 
balance masses are raised bringing the c.g. above the pivot and (s)/x(s) is unstable.  Stabilizing 
and controlling such a system graphically demonstrates the effectiveness of closed loop control. 
 
Procedure: 

1. Adjust the position of the balance masses to lt = 7.0 cm being sure to secure 
them on the threaded rod by counter rotating them.  Verify that the donut 
weights are in place and secure on the sliding rod.   Hence place the apparatus 
in the Plant #2 configuration. 

2. Repeat the design and implementation process of experiment 6.2, noting the 
following: 

a) You may assume that the PD controller designed previously experiment 
has similar natural frequency and damping (you may verify this by 
recalculating m* and then n and  for the new mass properties) when 
applied here and hence you may use the same kp & kd. 

b) Use the same desired closed loop denominator given by Eq. (11.2-13). 

c) In initializing the system per step 6 in Section 11.2.2 it will be more 
difficult to manually balance the pendulum such that you Reset Controller 
then Implement Algorithm without the pendulum moving.  With a little 
practice however you should be able to do it. 

3 You should add a noise filter to your design per experiment 11.3 before 
implementing. 

4. Compare your step response with that obtained in experiment 11.2.  How do 
the closed loop transfer functions compare? (Assume that c(s)=1 throughout 
the control bandwidth.) 

5. Save your controller configuration via Save Settings in the File menu. 

 

 
 
 
 
  

                                                 
41Recall however that (s)/Fs) is unstable. 
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Experiment#15 
 
 
 
 
 

Gyroscope Dynamics: Nutation and Precession 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

			
 



 

113 
Dr. Rad 
Revise 6/2016  

Background Theory 
 
The gyroscope depicted in Figure 1 consist of 4 (rigid) rotating masses. The 4 rigid bodies 
each have a angular position θ relative to their rotating gimbal axis and an overview of the 
definition of the rigid bodies has also been given in Table 1. 
For the derivation of a dynamic model we assume the gyroscope to be symmetric and the 
center of the rigid bodies to all lie at the center of body D (the rotor). As a result, only the 
rotational dynamics needs to be taken into account. For the rotational or angular position 
θi, i = 1, 2, 3, 4 of each rigid body, we adopt the following convention.. 

 
 

 
15.1.2 Conventions for angular position 
 
• The angular position θ1 of the rotor (body D) is not of importance. We will only be 
considering the angular velocity ω1 = θ˙1. 
• The angular position θ2 of the rotor drum (body C) is set to θ2 = 0 if the rotor drum 
(body C) is perpendicular to the inner gimbal (body B). 
• The angular position θ3 of the inner gimbal (body B) is set to θ3 = 0 if the inner gimbal (body 
B) is perpendicular to the outer gimbal (body A). 
• Since the outer gimbal (body A) is able to rotate freely and the gyroscope is assumed 
to be symmetric, θ4 can be reset to θ4 = 0 at any angular position of the outer gimbal (body A).  
Since each rigid body might be able to rotate along a 3 dimensional axis, we must consider 
the inertia I, J and K of each rigid body respectively along x1, x2 or x3 axis. This defines 
the inertia Ib, with b = A,B,C or D in Table 1 as 
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where Ib denotes the inertia along the x1-axis, Jb denotes the inertia along the x2 axis and Kb 
denotes the inertia along the x3 axis for b = A,B,C,D. Note that only moments of inertia 
are considered, while products on inertia are considered to be zero due to the symmetric 
nature of the gyroscope. 
The angular position of the 4 rigid bodies in the gyroscope can be changed by 2 internal 
torques and labeled T1 and T2 in Figure 1. The 2 internal torques T1 and T2 are generated 
by small DC motors that apply a torque to respectively to the rotor (body D) and the rotor 
drum (body C). Torque T1 will make the rotor spin like a wheel around its (perpendicular) 
axis 1, whereas torque T2 will make the rotor drum spin around the (longitudinal) axis 2. 
 
15.1.3 Non-linear dynamics of gyroscope 
 
Since both T1 and T2 are applied internally on a rigid body of the gyroscope, each torque will 
have a counteracting torque on another rigid body. By inspecting the mechanical connections 
in the schematics of the gyroscope in Figure 1, the following simple observations can be made: 
• Depending on the angular position θ2 and θ3, application of the torque T1 on the rotor 
(body D) will for example result in a direct counteracting torque T3 causing rotation 
of the inner gimbal (body B) and/or a direct counteracting torque T4 causing rotation 
of the outer gimbal (body A). 
• The angular position of θ2 can be changed by application of T2 on the rotor drum 
(body C). Depending on the angular position θ3, application of the torque T2 on the 
rotor drum (body C) will for example result in a direct counteracting torque T4 causing 
rotation of the outer gimbal (body A). Interestingly, when ω1 = θ˙1 _= 0, rotation of the 
outer gimbal (body A) is possible even if θ3 = 0 due to an (indirect) moment caused 
by a Coriolis force (change in angular momentum). 
On the basis of these simple observations, it is clear that the relationship between the 
internal torques T1, T2 and the angular positions θi and velocities ωi = ˙θi, i = 1, 2, 3, 4 will 
formulate the equations of motion of the gyroscope. The equations of motions can be derived 
using Lagrange’s equations or Kane’s method and will result in a set of coupled (non-linear) 
differential equations of the form 
 
 

 
 
 
in which the torques T1 and T2 are considered as input signals. The full derivation of the 
(non-linear) equations of motion can be found in the Model 750 Control Moment Gyroscope 
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Manual. It can be noted here that the equations of motion do not depend on θ1 and θ4, as 
the angular position θ1 of the rotor (body D) and the angular position θ4 of the outer gimbal 
(body A) is irrelevant for the dynamic behavior of the gyroscope. 
 
15.1.4 Linearized dynamics of gyroscope 
 
Considering only (small) perturbations around the angular velocity ω1 = θ˙1 of the rotor 
(body D), the angular position θ2 of the rotor drum (body C) and the angular position θ3 of 
the inner gimbal (body B) allows for a significant simplification of the (non-linear) equations 
of motion. In case we assume an operating point of the gyroscope with 

 
the equations of motion in (1) reduce to 

 Although the equations in (2) look complicated, they have all been written in the form where 
the inertia times angular acceleration equals the sum of torques: 

 
reflecting 2nd Newton’s law for rotational motion. The coupled set of (linear) differential 
equations are useful in determining the linear dynamic model of the gyroscope for special 
cases. 
 
15.1.5 Linear dynamics for special case in laboratory experiment 
 
To further simplify the dynamical model of the gyroscope, we consider several special cases 
on the basis of an operating point of the gyroscope given by 
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where zero angles are defined according to the convention defined on page 5 of this laboratory 
handout. With the operating point defined in (3), special cases of the dynamics of the 
gyroscope are found by applying some of the (electromechanical) brakes for either axis 3 
(rotation of outer gimbal) or axis 4 (rotation of inner gimbal) of the gyroscope. 
In case none of the brakes are used, both the inner and outer gimbals are able to rotate 
freely. With the operating point defined in (3), the linearized equations of motion in (2) reduce to 
 

 
 

and formulate a set of couple linear (second order) differential equations. This can also be 
written as a set of coupled first order differential equations by definition of the state vector: 
 
 

 
 

formulating the state space model 
 
 

 
 
 
The result is a 7th order state space model. Computing the eigenvalues of the state 
matrix A results in the following pole locations: 
 
• 2 poles at 0 due to the rigid body mode. The rigid body mode is due to free rotation 
θ3 of the inner gimbal (body B) as a result of a direct counteracting torque T3 caused 
by torque T1 to rotate the rotor (body D). 
• 3 additional poles at 0 due to the kinematic differential equations. 
• 2 complex poles that models the oscillatory behaviour that couples the rotor drum 
(body C) rotation with the rotation of the outer gimbal (body A). The resonance 



 

117 
Dr. Rad 
Revise 6/2016  

frequency ωn found from the complex pole pair located at  }jωn is called the nutation 
frequency of the gyroscope in rad/s. 
Instead of writing a state space model (5), the linearized equations (4) can also be used 
to write a transfer function representation between the angular positions and applied torques 
via Laplace transform. Some of the resulting transfer functions are 
 

 
The transfer function G31(s) is the relation between θ3(s) of the inner gymbal (body B) and 
the applied torque T1(s) on the rotor (body D) and indicates a simple rigid body motion (2 
poles at origin) due to free rotation θ3 of the inner gimbal (body B). Transfer function G22(s) 
is the relationship between torque T2 and the resulting angular position θ2 of the rotor drum 
(body C) 
 
 

This section measures the nutation and precession of the gyroscope as a function of wheel speed. 
It also demonstrates the damping of nutation through rate feedback at Gimbal #2, and finally, 
gives another way of interpreting precession in terms of conservation of angular momentum. All 
tests in this section are performed with the apparatus in the configuration of Figure 8.2-1.  
Important Notice: From this point on in the instructions, no specific reminders to perform the 
required safety procedures shall be given. 
 

Figure 15.2-1. Configuration For All Tests In This Section.



 

118 
Dr. Rad 
Revise 6/2016  

 

15.2.1 Nutation: Frequency & Mode Shapes  

Procedure  

1. Setup the mechanism as shown in Figure 15.2-1.  

2. Write a simple real-time algorithm to activate Motor #2 (i.e. put control effort values on 
the DAC) with a Control Effort equal to the (Commanded Position)/32.1 Use the global 
real-time variables “control_effort2” and “cmd1_pos” for this purpose.  

3. Go to Trajectory 1 Configuration. Enter Impulse and specify an Amplitude of 16000 
counts, a Pulse Width of 50 ms, a Dwell Time of 4000 ms, and 1 repetition (this 
prepares the controller board to input a 16000 count positive-going impulse followed 
immediately by 4 seconds of zero input during which data is collected.  

4. Setup Data Acquisition (Setup menu). Specify Commanded Position 1, Sensor 2 Position, 
Sensor 4 Position, and Control Effort 2 as data to be acquired with a Sample Period of 4 
servo cycles 

 

5. Enter the ECP Multivariable Executive program. Implement your algorithm from Step 2 
above with sampling period set to Ts = 0.00442 seconds.  

6. Initialize Rotor Speed to 200 RPM and zero the encoder positions (Utility menu). Execute 
the maneuver selecting Normal Data Sampling and Execute Trajectory 1 Only .  

7. Plot the Encoder 2 and Encoder 4 Position data and subsequently the velocity data. Note 
the frequency of the oscillations and the relative amplitude and phase of the Encoder 4 
response verses the Encoder 2 response. Save your plots.  

8. Disable the rotor speed loop (Command menu). You may also want to turn off the Control 
Box to more rapidly decelerate the rotor. Wait for the rotor to stop (if you turned off the 
Control Box, turn it back on at this point). Repeat Steps 6 and 7 for a rotor speed of 400 
RPM.  

9. Repeat Step 8 for a rotor speed of 800 RPM.  

 

8.2.2 Precession  

Procedure  

10. Repeat Steps 1 through 6 of the Section 15.2.1 except in Step 3 setup the Impulse 
trajectory for an Amplitude of 6000 counts, a Pulse Width of 8000 ms, a Dwell Time of 
0 ms, and 1 repetition (this prepares the controller board to input a 6000 count constant 
input for 8 seconds). The first maneuver should be at 200 RPM and should result in a 
initial transient series of attenuating nutation oscillations followed by a steady state 
response. Plot the position data for Encoders 2 and 4 and also their velocity data. Save 
your plots.  

11. Repeat Step 10 for the 400 and 800 RPM cases. Note the change in steady state velocity 
for Encoder 4 with rotor speed.  

 

15.2.3 Nutation Damping  

Procedure  
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12. Augment your algorithm from Step 1 of Section 8.2.1 to add rate feedback damping at 
Axis 2. I.e. add a term u2damp of the form  

 

where kv is the rate feedback gain. You may use the backwards difference transformation to 
implement discrete time differentiation according to  

 

                                                                                                                15.2-8 

 

where Ts is the sampling period. Use Ts =0.00884 s. in this experiment.  

Have your laboratory supervisor review and approve your algorithms before proceeding..  

13. Set the rotor speed to 400 RPM. Beginning with a value of kv = 0.005 Implement your 
algorithm with Ts =0.00884 seconds.  

14. Repeat Step 10 except maintain the rotor speed at 400 RPM rotor speed. Do you see a 
reduction in the nutation mode amplitude?  

15. Repeat Steps 13 and 14 for various increasing values of kv. Do not exceed kv=0.10, 
higher values could lead to excessive numerical noise and damage to the system! How 
are the nutation oscillations affected by increased rate feedback gain? Save your plot of 
a case where the nutation is well damped. 

A. From the plotted data of Section 15.2.1, measure the frequency of the nutation mode for the three 
rotor speeds. (Hint: divide the number of cycles considered [typically between 2 and 5] by the 
time taken to complete them. Zoom the plot if necessary or export the raw numerical data to get 
precise readings and make sure that you start and end the evaluation period at the same phase in 
the respective cycles.) Compare your result with that predicted by the theory (i.e. the eigenvalues) 
or equivalently the characteristic roots . Assuming the measured and provided moments of inertia 
are within 10% of their actual values, are your results in agreement with the theory? What is the 
relationship between rotor speed and nutation frequency?  

B. Consider the position plots versus those of velocity for the data of Section 15.2.1. For a given test, 
are the oscillation frequencies the same? Are the relative amplitudes of the outputs at encoders 2 
and 4 the same? Are the steady state values the same? Explain your answers (you may neglect the 
effects of friction).  

C. Solve for the eigenvectors in the system matrix . Solve for the homogeneous motion solution (Hint: 
isolate the real and imaginary parts of the homogeneous solution and consider only the real part.) 
Measure and report the relative amplitudes and phasing of the axis 2 and 4 outputs from the tests 
of Section 15.2.1. How well do your results compare with theory? What is the relationship 
between rotor speed and nutation mode shape?  

D. Determine the precession rate (steady sate value of ω4) for each of the rotor speeds tested. (You 
may wish to consider the change in position, q4 divided by the time taken. This will generally 
result in greater precision than reading the velocity data directly.) How does this compare with 
that predicted by the gyroscopic relationship T = ω x H? (Recall that in this case, T=u2ku2). What 
is the relationship between rotor speed and precession rate?  

  E. What is the effect of rate feedback at axis 2 on the nutation mode? Plot a root locus of this           

           system where the closed loop roots are plotted as kvku2ke2 is varied of kv?  
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Experiment 16 
 

 

Matlab, Simulink, state feedback control 
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To introduce the use of Matlab in control system design 
 
Introduction: 
Matlab is a software system for doing numerical mathematics. The basic Matlab software 
is structured for convenient and rapid solution of problems in numerical linear algebra. In 
addition there are a number of toolboxes, which adapt Matlab to special tasks. We will 
study the basic Matlab package and the Control System Toolbox. 
The easiest way to get started on Matlab is to run demos 1 and 2 of the Matlab DEMO program, run the 
Matlab HELP programs and then start playing around with simple examples. 
 
Procedure: 
 

1. The basic Matlab system 
a. Throughout this and the other experiments the symbol <cr> means the ENTER or 

RETURN key on the keyboard. 
b. At the DOS prompt type matlab<cr> and then wait for the Matlab prompt, which is >>. 

At the Matlab prompt type demo<cr>. Follow the instructions to observe Demos 1) and 
2). (Observe others if you want) 

c. At the Matlab prompt type help<cr> and note the available operators and functions. Next 
type help sin<cr> to see the type of help available for individual functions. Next try 
others. 

d. Enter a vector by typing x = [1 2 3]. Next type x’. Now create a matrix by typing A = [x’ 
x’ x’]. Find determinant of this matrix. Enter another matrix A that is not singular. 
Calculate A * x. Solve A * y = x for y. 

e. Generate the vector t = 0:10. Repeat for t = 0:0.1:1. 
f. Generate the logspaced vector w = logspace(-1,2) and note the entries. Read help 

logspace. 
 

2. Matlab Graphics 
a. Plot several cycles of a sinusoid. Put axis labels and a title on your plot. 
b. Define a random vector and plot it. 
c. Define two random vectors x and y and make a point plot of x vs y. 
d. Print out one of your plots on printer. 

 
3. The control system toolbox 

a. Type ctrldemo<cr> and observe the demo. 
b. Type help rlocus<cr>, help bode<cr> and help step<cr> 
c. Plot the locus of the roots of (s3 + 6s2 + 5s) + K (s2 + 6s + 18) = 0 for 0 K200. On your 

plot indicate roots locations for K = 10. Re-scale your root locus plot showing only the 
second quadrant.(Hint: see help axis. Let (s2 + 6s + 18) as num and (s3 + 6s2 + 5s) as den. ) 

 
4. Control system Example: A unity feedback control system has loop gain function 

L(s)= 200 (s + 5) /[s (s+1) (s+20)(s + 30)]. 
a. Plot a bode plot for L (jw). 
b. Plot a Nyquist plot for L (jw). 
c. Plot the closed loop poles and zeros on the sgrid (Type help sgrid<cr>.) 
d. Plot the closed loop step response. Put on axis labels and a title and make a hardcopy. Put 

your name and date on your plot using the Matlab function text (see help text <cr>.) 
e. Generate a discrete time transfer function L (z) using the Toolbox function c2d 



 

122 
Dr. Rad 
Revise 6/2016  

5. (do help c2d <cr>). Use a sampling period Ts = 0.01 sec. 
a. Plot the poles and zeros of the closed loop discrete time system on zgrid. 
b.  

 
6. Simulink Example 1: 

a. Wire simulation for two-integrator feedback system shown in fig 0.1. 
b. Run simulation. 
c. Plot unit step response. 
d. Replace first integrator by the transfer function 2 / (s + 3) as shown in fig 0.2 and select the 

two feedback gains a and b to place closed loop poles at -1 + j2 and 
7. -1 - j2. 

a. Plot unit step response of your design. 
 

8. Simulink example 2: 
a. Wire the simulink diagram of the Lorentz attractor shown in the simulink help 

9. write up 
a. Plot 3D response of the system. 

 
Postlab Report: 
Turn in hardcopy of step response generated in part 4.d and 5.e. and calculations 
involved in 5.d. Also turn in the 3D plot requested in 6.b. above. 
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To get started, type one of these: helpwin, helpdesk, or demo. For product information, visit 
www.mathworks.com. 
» help simulink 
Simulink 
Version 7.0 (R11)  
Model analysis and construction functions. Simulation. 
 
sim - Simulate a Simulink model. 
sldebug - Debug a Simulink model. 
simset - Define options to SIM Options structure. 
simget - Get SIM Options structure 
Linearization and trimming. 
linmod - Extract linear model from continuous-time system. 
linmod2 - Extract linear model, advanced method. 
dlinmod - Extract linear model from discrete-time system. 
trim - Find steady-state operating point. 
 
Model Construction. 
 
close_system - Close open model or block. 
new_system - Create new empty model window. 
open_system - Open existing model or block. 
load_system - Load existing model without making model visible. 
save_system - Save an open model. 
add_block - Add new block. 
add_line - Add new line. 
delete_block - Remove block. 
delete_line - Remove line. 
find_system - Search a model. 
replace_block - Replace existing blocks with a new block. 
set_param - Set parameter values for model or block. 
get_param - Get simulation parameter values from model. 
bdclose - Close a Simulink window. 
bdroot - Root level model name. 
gcb - Get the name of the current block. 
gcbh - Get the handle of the current block. 
gcs - Get the name of the current system. 
getfullname - get the full path name of a block 
slupdate - Update older 1.x models to 3.x. 
addterms - Add terminators to unconnected ports. 
bool - Convert numeric array to boolean. Masking. 
hasmask - Check for mask. 
hasmaskdlg - Check for mask dialog. 
hasmaskicon - Check for mask icon. 
iconedit - Design block icons using ginput function. 
Maskpopups - Return and change masked block's popup menu items. 
movemask - Restructure masked built-in blocks as masked subsystems. 
 
Library. 
 
libinfo - Get library information for a system. 
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Hardcopy and printing. 
frameedit - Edit print frames for annotated model printouts. 
print - Print graph or Simulink system; or save graph to M-file. 
printopt - Printer defaults. 
orient - Set paper orientation. 
 
See also BLOCKS and SIMDEMOS. 
. 
» help step 
STEP Step response of LTI models. 
STEP(SYS) plots the step response of the LTI model SYS (created with either TF, ZPK, or SS). For 
multi-input models, independent step commands are applied to each input channel. The time range 
and number of points are chosen automatically. STEP(SYS,TFINAL) simulates the step response from 
t=0 to the final time t=TFINAL. For discrete-time models with unspecified sampling time, TFINAL is 
interpreted as the number of samples. STEP(SYS,T) uses the user-supplied time vector T for simulation. 
For discrete-time models, T should be of the form Ti:Ts:Tf where Ts is the sample time. For continuous-
time models, T should be of the form Ti:dt:Tf where dt will become the sample time for the discrete 
approximation to the continuous system. The step input is always assumed to start at t=0 (regardless of 
Ti). STEP(SYS1,SYS2,...,T) plots the step response of multiple LTI models SYS1,SYS2,... on a single 
plot. The time vector T is optional. You can also specify a color, line style, and marker 
for each system, as in 
step(sys1,'r',sys2,'y--',sys3,'gx'). 
When invoked with left-hand arguments, 
[Y,T] = STEP(SYS) 
returns the output response Y and the time vector T used for simulation. No plot is drawn on the screen. If 
SYS has NY outputs and NU inputs, and LT=length(T), Y is an array of size [LT NY NU] where Y(:,:,j) 
gives the step response of the j-th input channel. 
 
For state-space models, 
[Y,T,X] = STEP(SYS) 
also returns the state trajectory X which is an LT-by-NX-by-NU array if SYS has NX states. 
See also IMPULSE, INITIAL, LSIM, LTIVIEW, LTIMODELS. Overloaded methods 
help lti/step.m 

help frd/step.m 
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