MATH 4650-01 Analysis I - Quiz 2 prep

Cal State LA - Spring 2020

1. Let $x, y \in \mathbb{R}$. If $0<x<y$, then $0<1 / y<1 / x$.
2. Let $x, y \in \mathbb{R}$. If $x y>0$ then, either both x and y are positive, or both are negative.
3. Let $A \subset \mathbb{R}$ be a nonempty set that is bounded below. Then $\inf A$ exists.
4. Let $B \subset \mathbb{R}$ be bounded. Let $A \subset B$ be a nonempty subset. Suppose all the inf's and sup's exist. Show that

$$
\inf B \leq \inf A \leq \sup A \leq \sup B
$$

5. Let $A, B \subset \mathbb{R}$ be nonempty sets such that $x \leq y$ whenever $x \in A$ and $y \in B$. Then A is bounded above, B is bounded below, and $\sup A \leq \inf B$.
6. Let D be a nonempty set. Suppose $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ are bounded functions.
(a) Show

$$
\sup (f(x)+g(x))_{x \in D} \leq \sup f(x)_{x \in D}+\sup g(x)_{x \in D}
$$

and

$$
\inf (f(x)+g(x))_{x \in D} \leq \inf f(x)_{x \in D}+\inf g(x)_{x \in D}
$$

(b) Find examples where we obtain strict inequalities.
7. Let $S \subset \mathbb{R}$ be a nonempty bounded set. Then there exist monotone sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $x_{n}, y_{n} \in S$ and

$$
\sup S=\lim _{n \rightarrow \infty} x_{n} \text { and } \inf S=\lim _{n \rightarrow \infty} y_{n}
$$

8. Determine whether the following sequences are convergent. If yes, find the limit.
(a) $x_{n}=\frac{(-1)^{n}}{2 n}$.
(b) $x_{n}=2^{-n}$.
(c) $x_{n}=\frac{n}{n^{2}+1}$.
(d) $x_{n}=\frac{2^{n}}{n!}$.

MATH 4650-01 Analysis I - Quiz 2

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

1. (6 points) Let $x, y \in \mathbb{R}$. Show that if $x y>0$ then, either both x and y are positive, or both are negative.
2. (6 points) Prove that the sequence given by $x_{n}=\frac{(-1)^{n}}{n^{2}}$ is convergent. (Reminder: write a proof, do not use techniques you learned in Calculus).
3. Let D be a nonempty set. Suppose $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ are bounded functions.
(a) (4 points) Show $\sup (f(x)+g(x))_{x \in D} \leq \sup f(x)_{x \in D}+\sup g(x)_{x \in D}$.
(b) (4 points) Find examples where we obtain strict inequalities.

MATH 4650-01 Analysis I - Practice Problems - Quiz 3 prep

Cal State LA - Spring 2020

1. Find liminf and limsup for the following sequences:
(a) $x_{n}:=\frac{(-1)^{n}}{n}$
(b) $x_{n}:=\frac{(n-1)(-1)^{n}}{n}$
2. If $S \subseteq \mathbb{R}$ is a set, then $x \in \mathbb{R}$ is a cluster point if for every $\epsilon>0$, the set $(x-\epsilon, x+\epsilon) \cap S \backslash\{x\}$ is not empty. That is, if there are points of S arbitrarily close to x. For example, $S:=\{1 / n$: $n \in \mathbb{N}\}$ has a unique (only one) cluster point 0 , but $0 \notin S$. Prove the following version of the Bolzano - Weierstrass theorem:

Theorem. Let $S \subseteq \mathbb{R}$ be a bounded infinite set, then there exists at least one cluster point of S. Hint: If S is infinite, then S contains a countably infinite subset. That is, there is a sequence $\left\{x_{n}\right\}$ of distinct numbers in S.
3. Show that the following sequences are divergent:
(a) $x_{n}:=1-(-1)^{n}+\frac{1}{n}$
(b) $x_{n}:=\sin \left(\frac{n \pi}{4}\right)$
4. Suppose that $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and that $\lim _{n \rightarrow \infty}(-1)^{n} x_{n}$ exists. Show that $\left\{x_{n}\right\}$ converges.
5. Show directly from the definition that the following are Cauchy sequences:
(a) $x_{n}:=\frac{n+1}{n}$
(b) $x_{n}:=\frac{n^{2}-1}{n^{2}}$
(c) $x_{n}:=\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)$
6. Show directly from the definition that the following are not Cauchy sequences:
(a) $x_{n}:=(-1)^{n}$
(b) $x_{n}:=\left(n+\frac{(-1)^{n}}{n}\right)$
(c) $x_{n}:=\ln n$
7. Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.
8. If $0<r<1$ and $\left|x_{n+1}-x_{n}\right|<r^{n}$ for all $n \in \mathbb{N}$, show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
9. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences such that $\lim _{n \rightarrow \infty} y_{n}=0$. Suppose that for all $k \in \mathbb{N}$ and for all $m \geq k$ we have

$$
\left|x_{m}-x_{k}\right|<y_{k} .
$$

Show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
10. Decide the convergence or divergence of the following series.
(a) $\sum_{n=1}^{\infty} \frac{3}{9 n+1}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(e) $\sum_{n=1}^{\infty} n e^{-n^{2}}$

MATH 4650-01 Analysis I - Quiz 4

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

Total: 20 points

1. (4 points) Let c_{1} be a cluster point of $A \subseteq \mathbb{R}$ and c_{2} be a cluster point of $B \subseteq \mathbb{R}$. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that
(i) $f(x) \rightarrow c_{2}$ as $x \rightarrow c_{1}$.
(ii) $g(y) \rightarrow L$ as $y \rightarrow c_{2}$.

If $c_{2} \in B$ also suppose that $g\left(c_{2}\right)=L$. Let $h(x):=g(f(x))$ and show $h(x) \rightarrow L$ as $x \rightarrow c_{1}$.
(Hint: $f(x)$ could equal c_{2} for many $x \in A$.)
2. (4 points) Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2 .

$$
f(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in \mathbb{Q} \\
x^{2} & \text { if } & x \notin \mathbb{Q}
\end{array}\right.
$$

3. (4 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Suppose that for all rational numbers $r, f(r)=g(r)$. Show that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
4. (4 points) Let $f(x)=\left\{\begin{array}{ll}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ and $g(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Are these functions continuous? Prove your assertions.
5. (4 points) Let $S \subseteq \mathbb{R}$ be given. Suppose $f: S \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$ are continuous functions and define $p: S \rightarrow \mathbb{R}$ and $q: S \rightarrow \mathbb{R}$ by

$$
p(x):=\max \{f(x), g(x)\} \quad \text { and } \quad q(x):=\min \{f(x), g(x)\}
$$

Prove that p and q are continuous.

MATH 4650-01 Analysis I - Quiz 4

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

Total: 20 points

1. (4 points) Let c_{1} be a cluster point of $A \subseteq \mathbb{R}$ and c_{2} be a cluster point of $B \subseteq \mathbb{R}$. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that
(i) $f(x) \rightarrow c_{2}$ as $x \rightarrow c_{1}$.
(ii) $g(y) \rightarrow L$ as $y \rightarrow c_{2}$.

If $c_{2} \in B$ also suppose that $g\left(c_{2}\right)=L$. Let $h(x):=g(f(x))$ and show $h(x) \rightarrow L$ as $x \rightarrow c_{1}$.
(Hint: $f(x)$ could equal c_{2} for many $x \in A$.)
Fix $\epsilon>0$. By (ii), there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
\forall y \in B \backslash\left\{c_{2}\right\}, \quad\left|y-c_{2}\right|<\delta_{1} \Rightarrow|g(y)-L|<\epsilon . \tag{1}
\end{equation*}
$$

By (i), there exists $\delta_{2}>0$ such that

$$
\begin{equation*}
\forall x \in A \backslash\left\{c_{1}\right\}, \quad\left|x-c_{1}\right|<\delta_{2} \Rightarrow\left|f(x)-c_{2}\right|<\delta_{1} . \tag{2}
\end{equation*}
$$

CASE 1: Assume $c_{2} \notin B$. Then, if $x \in A \backslash\left\{c_{1}\right\}$ then $f(x) \in B \backslash\left\{c_{2}\right\}$. Therefore, by (1) and (2),

$$
\forall x \in A \backslash\left\{c_{1}\right\}, \quad\left|x-c_{1}\right|<\delta_{2} \Rightarrow\left|f(x)-c_{2}\right|<\delta_{1} \Rightarrow|g(f(x))-L|<\epsilon
$$

CASE 2: Assume $c_{2} \in B$. By assumption, $g\left(c_{2}\right)=L$. Fix $x \in A \backslash\left\{c_{1}\right\}$ with $\left|x-c_{1}\right|<\delta_{2}$. If $f(x) \neq c_{2}$ then proceed as in CASE 1. So assume $f(x)=c_{2}$. Then, $g(f(x))=g\left(c_{2}\right)=L$. Then,

$$
|g(f(x))-L|=0<\epsilon
$$

In any case, $\forall x \in A \backslash\left\{c_{1}\right\},\left|x-c_{1}\right|<\delta_{2} \Rightarrow|g(f(x))-L|<\epsilon$. Therefore, $h(x) \rightarrow L$ as $x \rightarrow c_{1}$.
2. (4 points) Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

$$
f(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in \mathbb{Q} \\
x^{2} & \text { if } & x \notin \mathbb{Q}
\end{array}\right.
$$

Fix $\epsilon>0$. Note that

$$
|f(x)-1|=\left\{\begin{array}{ll}
|x-1| & \text { if } \quad x \in \mathbb{Q} \\
\left|x^{2}-1\right| & \text { if } \quad x \notin \mathbb{Q}
\end{array}<2|x-1|\right.
$$

for x small enough (say, $|x-1|<1$). So if $\delta<\min \{1, \epsilon / 2\}$, then

$$
|x-1|<\delta \rightarrow|f(x)-1|<\epsilon
$$

Since $f(1)=1$, we conclude that f is continuous at 1 .
Now, let $A=\{x \in \mathbb{Q}: x<2\}$ and $B=\{x \notin \mathbb{Q}: x<2\}$. Note that $\sup A=2=\sup B$, so there exist sequences $\left\{x_{n}\right\}$ in A and $\left\{y_{n}\right\}$ in B such that

$$
\lim _{n \rightarrow \infty} x_{n}=2=\lim _{n \rightarrow \infty} y_{n}
$$

Note that

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=2=f(2)
$$

but

$$
\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty}\left(y_{n}\right)^{2}=4 \neq f(2)
$$

Therefore, f is not continuous at 2 .
3. (4 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Suppose that for all rational numbers $r, f(r)=g(r)$. Show that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
Fix $\epsilon>0$ and $x \in \mathbb{R}$. Note that

$$
x=\sup \{r \in \mathbb{Q}: r<x\} .
$$

So there is a sequence $\left\{r_{n}\right\}$ in \mathbb{Q} such that $r_{n} \rightarrow x$. Since both f and g are continuous, there exist M_{1} and M_{2} in \mathbb{N} such that

$$
n \geq M_{1} \Rightarrow\left|f\left(r_{n}\right)-f(x)\right|<\epsilon / 2, \& n \geq M_{2} \Rightarrow\left|g\left(r_{n}\right)-g(x)\right|<\epsilon / 2
$$

Note also that

$$
\begin{gathered}
\left.|f(x)-g(x)|=\left|f(x)-f\left(r_{n}\right)+f\left(r_{n}\right)-g(x)\right|=\left|f(x)-f\left(r_{n}\right)+g\left(r_{n}\right)-g(x)\right| \quad \text { (by hypothesis, } f\left(r_{n}\right)=g\left(r_{n}\right)\right) \\
\leq\left|f(x)-f\left(r_{n}\right)\right|+\left|g\left(r_{n}\right)-g(x) .\right|
\end{gathered}
$$

Take $M=\max \left\{M_{1}, M_{2}\right\}$. Then,

$$
n \geq M \Rightarrow|f(x)-g(x)| \leq\left|f(x)-f\left(r_{n}\right)\right|+\left|g\left(r_{n}\right)-g(x)\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

So for arbitrary $\epsilon>0$ we have $|f(x)-g(x)|<\epsilon$. Thus, $f(x)=g(x)$.
4. (4 points) Let $f(x)=\left\{\begin{array}{ll}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.

Are these functions continuous? Prove your assertions.
$\lim _{x \rightarrow 0} f(x)$ does not exists. Therefore, f is not continuous at 0 . On the other hand,

$$
\lim _{x \rightarrow 0} g(x)=0=g(0)
$$

So, g is continuous at 0 . Fix $c \neq 0$. Note that $h(x)=1 / x$ is continuos at c and $h(c) \neq 0$. Therefore, we can use properties of limits and continuous functions to verify the continuity of g at c :

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} x \sin (1 / x)=\lim _{x \rightarrow c} x \cdot \lim _{x \rightarrow c} \sin (1 / x)=c \cdot \sin \left(\lim _{x \rightarrow c} 1 / x\right)=c \cdot \sin (1 / c)=g(c) .
$$

Thus, g is continuous on \mathbb{R}.
5. (4 points) Let $S \subseteq \mathbb{R}$ be given. Suppose $f: S \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$ are continuous functions and define $p: S \rightarrow \mathbb{R}$ and $q: S \rightarrow \mathbb{R}$ by

$$
p(x):=\max \{f(x), g(x)\} \quad \text { and } \quad q(x):=\min \{f(x), g(x)\}
$$

Prove that p and q are continuous.
Note that

$$
p(x):=\max \{f(x), g(x)\}=\frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)+g(x)|
$$

and

$$
q(x):=\min \{f(x), g(x)\}=\frac{1}{2}(f(x)+g(x))-\frac{1}{2}|f(x)+g(x)| ;
$$

so the continuity of p and q follows from the these fact: addition and subtraction of continuous functions yield continuous functions, multiplying a continuous function by a constant yields a continuous function, and the absolute value function $h(x)=|x|$ (prove it!).

MATH 4650-01 Analysis I - Midterm 1 prep

Cal State LA - Spring 2020

1. (3.3.1) Find an example of a discontinuous function $f:[0,1] \longrightarrow \mathbb{R}$ where the conclusion of the intermediate value theorem fails.
2. (3.3.3) Let $f:(0,1) \longrightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 1} f(x)=0$. Show that f achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).
3. (3.3.13) True/False, prove or find a counterexample. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function such that $\left.f\right|_{\mathbb{Z}}$ is bounded, then f is bounded.
4. (3.3.15) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous.
(a) Prove that if there is a c such that $f(c) f(-c)<0$, then there is a $d \in \mathbb{R}$ such that $f(d)=0$.
(b) Find a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(\mathbb{R})=\mathbb{R}$ (i.e., f is onto), but $f(x) f(-x) \geq 0$ for all $x \in \mathbb{R}$.
5. (3.4.3) Show that $f:(c, \infty) \longrightarrow \mathbb{R}$ for some $c>0$ and be defined by $f(x):=1 / x$ is Lipschitz continuous.
6. (3.4.4) Show that $f:(0, \infty) \longrightarrow \mathbb{R}$ defined by $f(x):=1 / x$ is not Lipschitz continuous.
7. (3.4.8) Show that $f:(0, \infty) \longrightarrow \mathbb{R}$ defined by $f(x):=\sin (1 / x)$ is not uniformly continuous.
8. (3.4.10)
(a) Find a continuous $f:(0,1) \longrightarrow \mathbb{R}$ and a sequence $\left\{x_{n}\right\}$ in $(0,1)$ that is Cauchy, but such that $\left\{f\left(x_{n}\right)\right\}$ is not Cauchy.
(b) Prove that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, and $\left\{x_{n}\right\}$ is Cauchy, then $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
9. (3.4.11)
(a) If $f: S \longrightarrow \mathbb{R}$ and $g: S \longrightarrow \mathbb{R}$ are uniformly continuous, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=f(x)+g(x)$ is uniformly continuous.
(b) If $f: S \longrightarrow \mathbb{R}$ is uniformly continuous and $a \in \mathbb{R}$, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=a f(x)$ is uniformly continuous.
10. (3.4.12)
(a) If $f: S \longrightarrow \mathbb{R}$ and $g: S \longrightarrow \mathbb{R}$ are Lipschitz continuous, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=f(x)+g(x)$ is Lipschitz continuous.
(b) If $f: S \longrightarrow \mathbb{R}$ is Lipschitz continuous and $a \in \mathbb{R}$, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=a f(x)$ is Lipschitz continuous.

MATH 4650-01 Analysis I - Practice Problems - Quiz 3 prep

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

Total: 20 points

1. (4 points) Show that the following sequences are divergent:
(a) $x_{n}:=1-(-1)^{n}+\frac{1}{n}$
(b) $x_{n}:=\sin \left(\frac{n \pi}{4}\right)$
2. (4 points) Decide the convergence or divergence of the following series.
(a) $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
(b) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
3. (4 points) Show directly from the definition that the following are Cauchy sequences:
(a) $x_{n}:=\frac{n^{3}-1}{n^{3}}$
(b) $x_{n}:=\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)$
4. (4 points) If $x_{n}:=\sqrt{n}$, show that $\left\{x_{n}\right\}$ satisfies $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$, but that it is not a Cauchy sequence.
5. (4 points) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences such that $\lim _{n \rightarrow \infty} y_{n}=0$. Suppose that for all $k \in \mathbb{N}$ and for all $m \geq k$ we have

$$
\left|x_{m}-x_{k}\right|<y_{k} .
$$

Show that $\left\{x_{n}\right\}$ is a Cauchy sequence.

MATH 4650-01 Analysis I - Midterm 1

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

Total: 25 points

1. (4 points) Prove by induction. For a finite set A of cardinality n, the cardinality of $\mathcal{P}(A)$ is 2^{n}.
2. (4 points) Let $x, y, z \in \mathbb{R}$. Prove the following.
(a) If $0<x<y$, then $0<1 / y<1 / x$.
(b) If $x \leq y$ and $z \leq w$, then $x+z \leq y+w$.
3. (4 points) Let $S \subset \mathbb{R}$ be a nonempty bounded set. Then there exist monotone sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $x_{n}, y_{n} \in S$ and

$$
\sup S=\lim _{n \rightarrow \infty} x_{n} \text { and } \inf S=\lim _{n \rightarrow \infty} y_{n}
$$

4. (4 points) A sequence is $\left\{x_{n}\right\}$ is said to be bounded if it is bounded as a function, that is, there exists a number $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Show that every convergent sequence is bounded.

5. (6 points)

(a) Show that $x_{n}=\frac{n^{2}}{2^{n}}$ converges to 0 .
(b) Use the Squeeze Lemma to show that the sequence

$$
x_{n}=\frac{n^{2}-\cos ^{2}(n)}{2^{n}}
$$

converges to 0. Hint: Part (a) is useful here.
6. (3 points) Use the definition of convergence to show that the sequence

$$
x_{n}=\frac{(-1)^{n-1} \sqrt{n}}{n+1}
$$

is convergent.

MATH 4650-01 Analysis I - Midterm 1 - Retake

Cal State LA - Spring 2020

Full Name: \qquad Score: \qquad

Total: 25 points

1. (4 points) Prove by induction. Let $A \subset \mathbb{R}$ be a nonempty finite subset. Then A is bounded. Furthermore, both $\inf A$ and $\sup A$ exist and are in A.
2. (4 points) Mark the following statements True or False. Explain.
(i) If $\left\{x_{n}\right\}$ is a sequence such that $\left\{x_{n}^{2}\right\}$ converges, then $\left\{x_{n}\right\}$ converges.
(ii) If $\left\{a_{n}\right\}$ is a bounded sequence and $\left\{b_{n}\right\}$ is a sequence converging to 0 , then $\left\{a_{n} b_{n}\right\}$ converges to 0 .
3. (4 points) Let $A, B \subset \mathbb{R}$ be nonempty sets such that $x \leq y$ whenever $x \in A$ and $y \in B$. Then A is bounded above, B is bounded below, and $\sup A \leq \inf B$.
4. (4 points) A sequence is $\left\{x_{n}\right\}$ is said to be bounded if it is bounded as a function, that is, there exists a number $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Show that every convergent sequence is bounded.

5. (6 points)

(a)Use the definition of convergence to show that the sequence

$$
x_{n}=\frac{\sqrt{n}}{n+1}
$$

converges to 0 .
(b) Use the Squeeze Lemma to show that the sequence

$$
x_{n}=\frac{\sqrt{n}-\cos ^{2}(n)}{n+1}
$$

converges to 0 . Hint: Part (a) is useful here.
6. (3 points) Use the Ratio Test to show that the sequence

$$
x_{n}=\frac{2^{n}}{n!}
$$

is convergent.

MATH 4650-01 Analysis I - Midterm 2 prep

Cal State LA - Spring 2020

1. (3.3.1) Find an example of a discontinuous function $f:[0,1] \longrightarrow \mathbb{R}$ where the conclusion of the intermediate value theorem fails.
2. (3.3.3) Let $f:(0,1) \longrightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 1} f(x)=0$. Show that f achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).
3. (3.3.13) True/False, prove or find a counterexample. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function such that $\left.f\right|_{\mathbb{Z}}$ is bounded, then f is bounded.
4. (3.3.15) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous.
(a) Prove that if there is a c such that $f(c) f(-c)<0$, then there is a $d \in \mathbb{R}$ such that $f(d)=0$.
(b) Find a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(\mathbb{R})=\mathbb{R}$ (i.e., f is onto), but $f(x) f(-x) \geq 0$ for all $x \in \mathbb{R}$.
5. (3.4.3) Show that $f:(c, \infty) \longrightarrow \mathbb{R}$ for some $c>0$ and be defined by $f(x):=1 / x$ is Lipschitz continuous.
6. (3.4.4) Show that $f:(0, \infty) \longrightarrow \mathbb{R}$ defined by $f(x):=1 / x$ is not Lipschitz continuous.
7. (3.4.8) Show that $f:(0, \infty) \longrightarrow \mathbb{R}$ defined by $f(x):=\sin (1 / x)$ is not uniformly continuous.
8. (3.4.10)
(a) Find a continuous $f:(0,1) \longrightarrow \mathbb{R}$ and a sequence $\left\{x_{n}\right\}$ in $(0,1)$ that is Cauchy, but such that $\left\{f\left(x_{n}\right)\right\}$ is not Cauchy.
(b) Prove that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, and $\left\{x_{n}\right\}$ is Cauchy, then $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
9. (3.4.11)
(a) If $f: S \longrightarrow \mathbb{R}$ and $g: S \longrightarrow \mathbb{R}$ are uniformly continuous, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=f(x)+g(x)$ is uniformly continuous.
(b) If $f: S \longrightarrow \mathbb{R}$ is uniformly continuous and $a \in \mathbb{R}$, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=a f(x)$ is uniformly continuous.
10. (3.4.12)
(a) If $f: S \longrightarrow \mathbb{R}$ and $g: S \longrightarrow \mathbb{R}$ are Lipschitz continuous, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=f(x)+g(x)$ is Lipschitz continuous.
(b) If $f: S \longrightarrow \mathbb{R}$ is Lipschitz continuous and $a \in \mathbb{R}$, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=a f(x)$ is Lipschitz continuous.

MATH 4650-01 Analysis I - Midterm 2 - printable version

 Cal State LA - Spring 2020Full Name: \qquad Score: \qquad

Total: 25 points

1. (3 points) Find an example of a discontinuous function $f:[0,1] \longrightarrow \mathbb{R}$ where the conclusion of the intermediate value theorem fails.
2. (6 points) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous.
a) Prove that if there is a c such that $f(c) f(-c)<0$, then there is a $d \in \mathbb{R}$ such that $f(d)=0$.
b) Find a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(\mathbb{R})=\mathbb{R}$ (i.e., f is onto), but $f(x) f(-x) \geq 0$ for all $x \in \mathbb{R}$.
3. (4 points) Let $c \geq 0$ be given. Consider $f:(c, \infty) \longrightarrow \mathbb{R}$ defined $f(x)=1 / x$. Prove the following:
a) If $c>0$ then, f is Lipschitz continuous.
b) If $c=0$ then, f is not Lipschitz continuous.
4. (4 points) Let $f:(0,1) \longrightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 1} f(x)=0$. Show that f achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).
5. (4 points)
a) If $f: S \longrightarrow \mathbb{R}$ and $g: S \longrightarrow \mathbb{R}$ are uniformly continuous, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=f(x)+g(x)$ is uniformly continuous.
b) If $f: S \longrightarrow \mathbb{R}$ is uniformly continuous and $a \in \mathbb{R}$, then $h: S \longrightarrow \mathbb{R}$ given by $h(x):=a f(x)$ is uniformly continuous.
6. (4 points) Suppose $f: S \longrightarrow \mathbb{R}$ and $g:[0, \infty) \longrightarrow[0, \infty)$ are functions, g is continuous at 0 and whenever x and y are in S we have $|f(x)-f(y)| \leq g(|x-y|)$. Prove that f is uniformly continuous.
