Math 4650 9/8/25

Ex: Let
$$a_n = \frac{1}{n}$$

Sequence: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots$
We hypothesize that $\lim_{n \to \infty} \frac{1}{n} = 0$.
Before we prove this, let's
calculate N for various ε
to get a feel for the def of limit.
Let $\varepsilon = 0.01$.
L=0

We want

| 1 - 0 | < 6.01

| 1 - 0 | < \\ \xi
| \xi
|

00 < 001

Sct N=101.

if $n \ge N$, then $\left|\frac{1}{n} - 0\right| < \varepsilon$.

What if $E = 0.000001 = \frac{1}{1000000}$

Set N = 100,001.

If N> N, then

$$\left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n} \leq \frac{1}{N} = \frac{1}{100,001} < 2$$

Claim: $\lim_{n\to\infty} \frac{1}{n} = 0$.

Proof:

Let 270.

We want to find N where

if n>N, then In-0/< E.

We have

$$\left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n}$$

We want $\frac{1}{n} < \Sigma$.

This is the same as $\frac{1}{5}$ < Ω .

Let N be a natural number with $\frac{1}{\epsilon} < N$.

Then if
$$n \ge N$$
 we have $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{2}{N}$

Thus, if
$$n \ge N$$
, then $\left| \frac{1}{n} - o \right| < 2$

So,
$$\lim_{n\to\infty} \frac{1}{n} = 0$$

Ex: Let c be a constant. Let's show lim c = c.

Proof; Let &>0. Let $a_n = c$ for all $n \ge 1$.

$$C+2$$
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 $C-2$
 A_{7}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 A_{7}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 A_{7}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{7}
 A_{7}

Set N=1. If $n \ge N$, then $|\alpha_n - c| = |c - c| = 0 < \varepsilon$ $|\alpha_n - c| = c.$ So $\lim_{n \to \infty} \alpha_n = c$.

So,
$$\lim_{n\to\infty} a_n = c$$
.

Ex: Let's show that

lim
$$\frac{n}{n+1} = 1$$
.

Proof:

Proof: Let E>0.

Goal: We want to find N where if $n \ge N$ then $\left|\frac{n}{n+1}-1\right| < \varepsilon$.

We have that $\left|\frac{n}{n+1}-1\right|=\left|\frac{n-(n+1)}{n+1}\right|$

$$=$$
 $\frac{1}{n+1}$ $\frac{1}{n+1}$ $\frac{1}{n+1}$ $\frac{1}{n+1}$

We want
$$\frac{1}{n+1} < \xi$$

This is when $\frac{1}{\xi} - 1 < n$.

Pick $N > \frac{1}{\xi} - 1$.

Then if $n \ge N$, then
$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \xi$$

$$\left| \frac{1}{n+1} < \frac{1}{\left(\frac{1}{\xi} - 1\right) + 1} = \frac{1}{\left(\frac{1}{\xi}\right)} = \xi$$

$$So_{1} \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

Ex: Consider $a_n = (-1)^n$. lim (-1)ⁿ We will show that nto dues not exist. We prove this by contradiction. Suppose $\lim_{n\to\infty} (-1)^n = L$ exists. Let &= 1. since lim (-1) = L there

must exist N where if
$$n \ge N$$
 then $|(-1)^n - L| < 1$. $\varepsilon = 1$

Case li Suppose L>0.

Pick no 7 N with no odd.

Then,

We get 1>1. Contradiction.

Case 2: Suppose
$$L < 0$$
.

Pick an even $n_e > N$.

Then,
$$| > | (-1)^{n_e} - L | = | 1 - L |$$

$$| = | -L > | + 0$$

So, 171. Contradiction.

In either conse we get a contradiction. So, lim (-1) dues not exist.

Theorem: Limits are unique.

That is, if lim $a_n = L_1$ and $n \neq \infty$ lim $a_n = L_2$, then $L_1 = L_2$.

Proof:

Let E70.

Since $\lim_{n\to\infty} a_n = L_1$ there exists N_1 where if $n > N_1$, then $|a_n - L_1| < \frac{\epsilon}{2}$.

Since lim an = Lz there exists

Nz where if n7, N2 then | an - Lz | < 8/2.

lick some no > max {Ni, No. }. That is, no > N, and no > Nz. Then, $|L_1-L_2|=|L_1-\alpha_{no}+\alpha_{no}-L_2|$ $\leq |L_1 - \alpha_{no}| + |\alpha_{no} - L_2|$ $\Delta - inequality$ $|x+y| \le |x|+|y|$ くらって = 8

So, |LI-Lz| < E. Since E70 was arbitrary,

by HW this implies |L1-L2 = 0. So, $L_1 - L_2 = 0$ So, L, = L2. anitz. N₂ N_o L2+4/2