Math 4650 9/22125

Opic 2a-Application of Monotone Convergence Theorem

Let a e IR with a > 0. You can find a monotonically decreasing sequence (an) that converges to Va. a, > 0 be any real number. Let $a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$, n>1. this is from Newton's method.

Let's approximate
$$\sqrt{2}$$
.
Here $\alpha = 2$.
Let $\alpha_1 = 1 > 0$.
Then, $\alpha_2 = \frac{1}{2}(\alpha_1 + \frac{2}{\alpha_1})$
 $= \frac{1}{2}(1 + \frac{2}{1}) = \frac{3}{2} = 1.5$
And, $\alpha_3 = \frac{1}{2}(\alpha_2 + \frac{2}{\alpha_2})$
 $= \frac{1}{2}(\frac{3}{2} + \frac{2}{(3/2)}) = \frac{17}{12} \approx 1.416$
And, $\alpha_4 = \frac{1}{2}(\alpha_3 + \frac{2}{\alpha_3})$
 $= \frac{1}{2}(\frac{17}{12} + \frac{2}{(17/12)}) = \frac{577}{408}$
 $\approx 1.414215686...$

And, $a_s = \frac{1}{2}(a_4 + \frac{2}{a_4})$

$$= \frac{1}{2} \left(\frac{577}{408} + \frac{2}{(577)} \right)$$

$$= \frac{665857}{470832} \approx 1.41421356237...$$

Note:

$$\sqrt{2} \approx 1.41421356237309...$$

Theorem: Let a>0.

Define:
$$a_1 > 0$$
 is any real number
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) \text{ for } n > 1$$

Then:

$$\frac{1}{2} \lim_{n \to \infty} a_n = \sqrt{a}$$

$$\frac{\alpha_{n}-\alpha_{n}}{3} |\alpha_{n}-\sqrt{\alpha}| \leq \frac{\alpha_{n}^{2}-\alpha_{n}}{\alpha_{n}}$$

when n>2

Proof:

(1) Br

Fact I: $a_n > 0$ for $n \ge 1$ We know $a_1 > 0$.

If $a_k > 0$, then $a_{k+1} = \frac{1}{2}(a_k + \frac{a}{a_k}) > 0$ By induction, $a_n > 0$ for $n \ge 1$

Fact 2: $a_n \gg \sqrt{a}$ for $n \geqslant 2$ Let $k \geqslant 1$. By def $2a_{k+1} = a_k + \frac{a}{a_k}$ So, $a_k^2 - 2a_k a_{k+1} + a = 0$ Thus, $a_k^2 - 2a_{k+1} + a_k = 0$

has a real root x = ax Thus, the discriminant is not negative. So, (- Zakti) - 4(1)(a) > 0 Thus 4a, 1-4a70 So, 2 ak+1 > a Thus ak+17 Ja fuc k>1 Hence, an > Va for n>2

Fact 3:
$$a_n > a_{n+1}$$
 for $n > 2$

Let n=2.

Then,

$$\alpha_n - \alpha_{n+1} = \alpha_n - \frac{1}{2} \left(\alpha_n + \frac{\alpha}{\alpha_n} \right)$$

$$=\frac{1}{2}a_n-\frac{1}{2}\frac{a}{a_n}$$

$$=\frac{1}{2}\left(\frac{\alpha_{n}^{2}-\alpha}{\alpha_{n}}\right) > 0$$

Fact 2: an > Ja an - a > 0

Fact 1: a, 70

So, $\alpha_n - \alpha_{n+1} > 0$

Thus, an >, anti.

Now we finish part (1) We have from above that: α_2 >, α_3 >, α_4 >, α_5 >, >, $\sqrt{\alpha}$ >0 So we have a sequence thats bounded between az and Ja and its monstonically decreasing, So, by the monotone convergence theorem, (an) =1 converges

2 Let's show $\lim_{n\to\infty} a_n = \sqrt{a}$ We know $L = \lim_{n\to\infty} a_n$ exists. We know $a_{n+1} = \frac{1}{2}(a_n + \frac{a}{a_n})$

Thus,
$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$

So, $L = \frac{1}{2} \left(L + \frac{\alpha}{L} \right)$

Thus, $L^2 = \frac{1}{2} L^2 + \frac{1}{2} \alpha$

So, $2 L^2 - L^2 = \alpha$

Thus, $L^2 = \alpha$

So, $L = \pm \sqrt{\alpha}$

We know $L > D$ because Hw^2
 $a_n > 0$ for all n .

(3) Unline

HW Z

G(a) Suppose $(x_n)_{n=1}^{\infty}$ is a Convergent sequence with $x_n \ge 0$ for $n \ge 1$.

If $\lim_{n \to \infty} x_n = L$, then $L \ge 0$.

Proof: Let's prove this by contradiction. Suppose L<0.

Let
$$\mathcal{E} = |L| > 0$$

Let $\mathcal{E} = |L| > 0$

Since $\lim_{N \to \infty} x_n = L$ there exists

No where if $n > N$

then $|x_n - L| < \mathcal{E}$

In particular $|x_N - L| < \mathcal{E}$.

So, $|x_N - L| < |L|$

Then,

 $|x_N - L| < |x_N - L| < |$

50, L-ILI < XN < L+ |L|

Since L<0 we know |L|=-L. Thus, $L-(-L) < X_N < L-L$ Son 2 L < XN < 0 Thus, XN < 0. But the assumption was Xn7,0 for all n. Contradiction. Thus, L<D can't happen. Hence, L>0.