Math 4650 11/5/25

Schedule 11/5 Topic 5 11/10 11/12 Review Review 11/19 11/17 Test 2 Review 11/26 11/24 HULIDAY HOLIDAY 12/3 12/1 Topic 6 Topic 6 12/8 Final

2:30-4:30

Theorem: Let f be continuous on [a,b] with a < b. Then fattains it's maximum and minimum on [9,6]. That is, there exists a with $\alpha \leq c \leq b$ with $f(c) \geqslant f(x)$ for all a < x < b. And there exists d with a < d < b with $f(q) \leq f(x)$ $f(d) \leq t(x)$ for all $a \leq x \leq b.$ Proot:
We will prove that fattains
it's maximum. For the
minimum, just repeat the
proof with -finstead of f.

Consider
$$S = \{f(x) \mid \alpha \leq x \leq b\}$$

$$Ex: f(x) = x$$

$$[a,b] = [-1,2]$$

$$S = [0,4]$$

Let's show that S is bounded from above. Suppose S is not bounded from above. Then for each nEM there exists a < xn < b where $f(x_n) > n$.

Since $a \le x_n \le b$ for all n,

the sequence $\int_{\infty}^{\infty} a(x_n) dx_n = \int_{\infty}^{\infty} a($ $(X_N)_{N=1}^{\infty}$ is

a bounded sequence.

The Bolzano-Weierstrass theorem tells us that we

get a convergent subsequence $\times N_1$) $\times N_2$) $\times N_3$) $\times N_3$ with $n_1 < n_2 < n_3 < \cdots$ Suppose lim Xnk = C. Since $\alpha \leq x_{n_k} \leq b$, by HWZ #6(c) We get $a \leq \lim_{n \to \infty} x_{n k} \leq b$. Su, $\alpha \leq c \leq b$. Since f is continuous atc, $f(c) = \lim_{n \to \infty} f(x_{n \kappa})$

But the limit on the right doesn't exist because $f(x_{nk}) \ge n_k$ $f(x_{nu}) \longrightarrow \infty$ because nk -> m. Contradiction. So, S is bounded! Thus, M=sup(S) exists. By the inf/sup theorem, for each mEN there exist ym with a ≤ ym ≤ b $M - \frac{1}{m} < f(y_m) \leq M$

So,
$$M-1 < f(y_1) \leq M$$

 $M-\frac{1}{2} < f(y_2) \leq M$
 $M-\frac{1}{3} < f(y_3) \leq M$
 $M-\frac{1}{4} < f(y_4) \leq M$
 $M-\frac{1}{4} < f(y_4) \leq M$

Here lim f(ym) = M.
m>xx Since $(y_m)_{m=1}^{\infty}$ is a bounded seguence [a < ym < b, \fm] there exists a convergent Subsequence (yme) l=1 $\lim_{m \to \infty} y_{m_{\alpha}} = d.$ Suppose

a < yme < b for all me Since get a ≤ d ≤ b. We f is continuous at dy Since. $f(d) = \lim_{M \to \infty} f(y_{m_{\Omega}}) = M$ $f(d) = \lim_{M \to \infty} f(y_{m_{\Omega}}) = M$ lim f(ym)=M m+m THWZ HW5 #2 Since $f(d) = M = \sup(S)$ We know $f(d) \ge f(x)$ for all a < x < b. Thus, fattains its maximum at d.