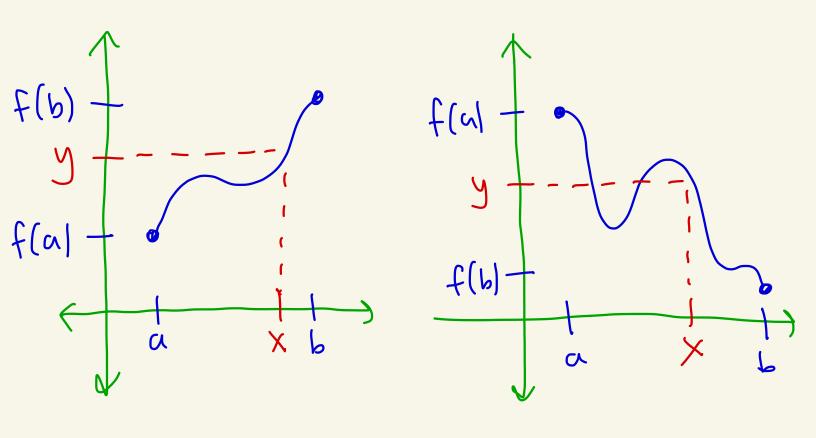
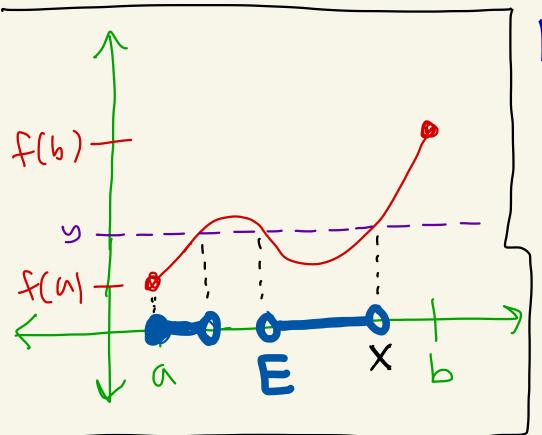
Math 4650 11/3/25

Theorem (Intermediate Value theorem)

Let f be continuous on [a,b] with a < b. If for some $y \in \mathbb{R}$ we have either f(a) < y < f(b) or f(b) < y < f(a) then there exists x with a < x < b with f(x) = y.



proof: We will prove the case when f(a) < y < f(b) other case is similar. Define $E = \{ t \mid a \le t \le b \text{ and } f(t) < y \}$



Note that $a \in E$ because $a \le a \le b$ and $f(\alpha) < y$. So, E + \$ And E=[9,6] So, b is an upper bound for E.

By the completeness axiom, $X = \sup(E) exists.$

We will prove: $\alpha < x < b$ and f(x) = y

From HW 1, if $A \subseteq B$, then inf(B) \leq inf(A) \leq sup(A) \leq sup(B). Since $E \subseteq [a,b]$ we know $a \leq$ inf(E) \leq sup(E) \leq b.

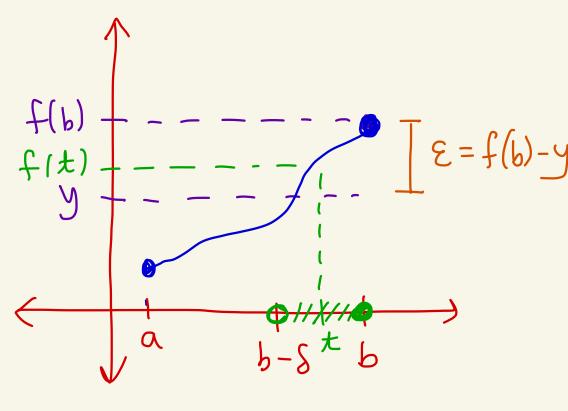
So, $a \leq x \leq b$. Let's show that a < x < b.

First let's show X < b.

We know y < f(b).

Since f is continuous at b, there exists \$>0 so that if $t \in [a,b]$ and |t-b| < Sthen |f(t)-f(b)| < f(b)-y, b-S b+S if b-S<t=b, then -(f(b)-y)< f(x)-f(b)< f(b)-ySo if b-8< t < b, then y < f(t) < 2f(b) - y

So if $b-8 < t \leq b$, then y < f(t).



Since $E = \{ \pm | \alpha \le \pm \le b \text{ and } f(\pm) < y \}$ We know $E \cap (b-s,b) = \emptyset$. So, b-s is an upper bound for E.

Thus, $x = \sup(E) \le b - S < b$ So, x < b.

Similarly you can show a < X. Thus, a<x<b. Now we show f(x) = y. First we show $f(x) \leq y$. By the inf-sup theorem, Since $X = \sup(E)$, for each n = IN there exists $X_n \in E$ with $X - \frac{1}{n} < X_n \le X$ XneE $\times = \sup(E)$ This gives a sequence \times_{1} , \times_{2} , \times_{3} , \times_{4} , ... of points from E with $\lim_{n\to\infty} x_n = x$. Since each Xn E E we Know $f(x_n) < y$. Since f is continuous at X, and $x \in [a,b]$ and $\lim_{n \to \infty} x_n = x_n$ by the previous theorem We KNOW that $\lim_{x \to \infty} f(x_n) = f(x)$ $n \rightarrow \infty$

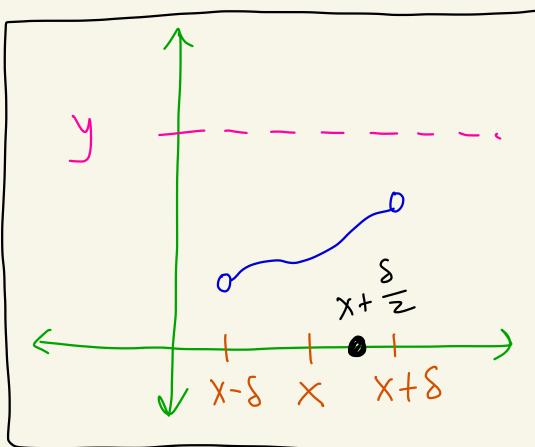
By HW Z, since f(xn) < y for all n, we get $\lim_{n\to\infty} f(x_n) \leq \lim_{n\to\infty} y$ S_{0} $+(x) \leq y$. Now let's show that f(x) > y. We will rule out f(x)<y. Suppose f(x) < y. Since f is continuous at x there exists \$>0 where if te(a,b) and |t-x|<S, then |f(x)-f(x)| < y-f(x)

the above we can assume S < b-x by shrinking needed. D/// A $x-8 \times x+8$ b x-8< t < x+8 < b then -(y-f(x))< f(t)-f(x) < y-f(x)50 if x-8< t< x+8<b, -y+2f(x)< f(t)< y.So if X-S< t< x+8<5 then f(t) < y.

Then,
$$(x-s, x+s) \subseteq E$$

But then $x + \frac{s}{2} \in E$

This contradicts that $X = \sup(E)$.



Thus, f(x) < y is impossible.

Therefore, f(x) > y.

Since $f(x) \leq y$ and $f(x) \neq y$

we get f(x)=9.

11/3 Topic 5	11/5 TOPIC 5/TOPIC 6
11/10 REVIEW	11/12 REVIEW
11/17 REVIEW	TEST 2
11/24 Holiday	11/26 Holiday
12/1 TOPIC 6	12/3 TOPIC 6
12/8 FINAL	