Math 4650 10/8/25

$$X = \left\{ 1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N} \right\}$$

$$n=1$$
 $n=3$
 $n=4$
 $1-\frac{1}{3}$
 $1+\frac{1}{4}$
 $1+\frac{1}{2}$
 2

$$\inf(X) = 0$$

 $\sup(X) = 1 + \frac{1}{2} = \frac{3}{2}$

$$2)(d)$$

$$X = \{\frac{x}{1+x} \mid x \in \mathbb{R}, x > -1\}$$

$$X = (-\infty, 1)$$

$$X = \lim_{x \to \infty} \frac{1}{1+1} = \lim$$

$$\lim_{x \to \infty} \frac{x}{1+x} = \lim_{x \to \infty} \frac{1}{x+1} = 0+1$$

$$\lim_{x \to \infty} \frac{x}{1+x} = \lim_{x \to \infty} \frac{1}{x+1} = 0+1$$

$$x$$
 has no infimum $sup(x) = 1$

$$AW1$$

$$X = \{x \in \mathbb{R} \mid x^3 \le 1\}$$

$$x = \{x \in \mathbb{R} \mid x^3 \le 1\}$$

$$X = (-\infty, 1)$$

$$X = (X) = 0$$

$$X = (X) = 1$$

$$X = (X) = 1$$

Hw 1)

(5) Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$.

Suppose b is an upper bound

for S and $b \in S$.

Prove $b = \sup(S)$.

Proof:
Since b is an upper burnd for S,
by the completeness axium,
sup(s) exists.

Ne are given that b is an upper bound for S. Let's show b is the least upper bound for S.

Suppose c is some upper bound for S. Then, X < C for all X ∈ S. Since bes is given we know b < c. Su, b is the least upper bound for S. Thus, $b = \sup(S)$

HW 1

(6) (a) If $A,B \neq U$ and both are bounded from below, and $A \subseteq B$, then inf $(B) \leq \inf(A)$.

Let $S_B = \inf(B)$, $S_A = \inf(A)$. Since $S_B = \inf(B)$ we know that SBEX for all XEB. Since $A \subseteq B$ we know $\begin{cases} x \\ x \end{cases}$ $S_{B} \leq x \text{ for all } x \in A.$ So, SB is a lower bound for A. Since SA = inf(A) we know SA is the greatest lower bound for A. $S_0, S_B \leq S_A.$ Thus, inf $(B) \leq inf(A)$

$$(7)(a)$$
 A, B \leq R, A, B $\neq \emptyset$.
Sup (A), sup(B) exists.

Prove:If $A \cap B \neq \emptyset$, then $Sup(A \cap B) \leq min \{ sup(A), sup(B) \}$

Proof:
Let
$$S_A = SUP(A)$$
, $S_B = SUP(B)$.

Then, $x \leq S_A$ for all $x \in A$

x < SB for all x ∈ B.

Let $X \in A \cap B$. Then, $X \in A$. So, $X \leq S_A$. So, S_A is an upper bound For $A \cap B$. Thus, $S = \sup(A \cap B)$ exists.

Note also that if XEANB
then XEB implying XESB.
So, SB is an upper bound for ANB.

Note that s=sup(ANB)
is the least upper
buind for ANB.

Thus, $S \leq S_A$ and $S \leq S_B$. So, $S \leq \min \{S_A, S_B\}$

HW 2

3(c)

Show

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$$

Proof:

Let ≤ 70 .

Note that

$$\left| (\sqrt{n+1} - \sqrt{n}) - 0 \right|$$

$$= |\sqrt{n+1} - \sqrt{n}|$$

$$= \sqrt{n+1} - \sqrt{n}$$

$$= \frac{(\sqrt{n+1} - \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})}$$

$$= \frac{(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})}$$

$$= \frac{(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n}}$$

$$= \frac{1}{\sqrt{n}}$$

So,
$$|\nabla n+1-|\nabla n| < |\nabla n|$$

We want $|\nabla n| < |\Sigma|$.

We have $|\nabla n| < |\Sigma|$ iff $|\nabla n| < |\Sigma|$.

Pick N where $|\nabla n| > |\nabla n|$.

Then, if $|\nabla n| > |\nabla n| < |\nabla n|$.

 $|\nabla n| < |\nabla n$