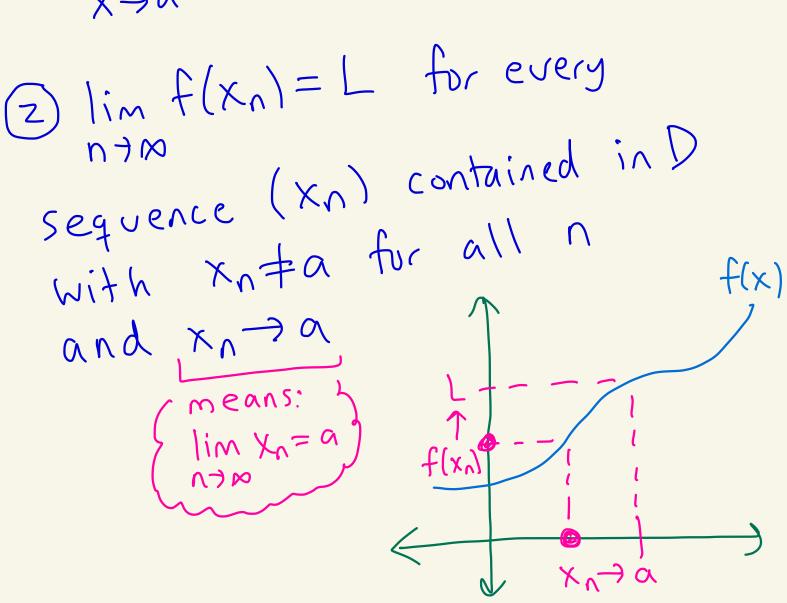
Math 4650 10/22/25

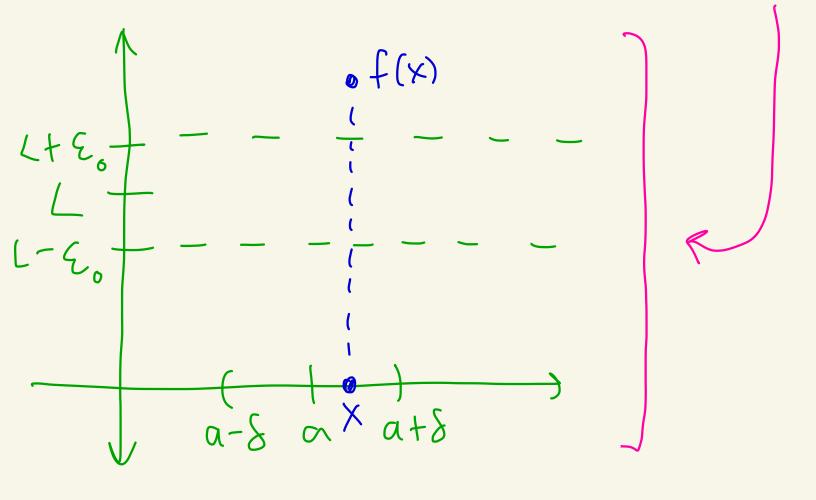
tunction-sequence limit theorem Let f: D-TR and a is a limit point of D. The following are equivalent: $\begin{array}{c} \text{(1)} & \lim_{x \to a} f(x) = L \\ x \to a \end{array}$ 2) lim f(xn) = L for every



Proof: $\lim_{x \to \infty} f(x) = L$ 0 → 2 : Suppose Let (Xn) be a sequence contained in D with $x_n \neq a$ for all n and $\times_n \rightarrow \alpha$. $\left(\begin{array}{c} \lim_{n\to\infty} x_n = \alpha \\ \end{array}\right)$ Goal: Show lim f(xn) = L. lim f(x) = L there exists £ >0. Let Since where if $0 < |x-\alpha| < S$ 5>0 then $|f(x)-L|< \varepsilon$

Since lim xn=a and xn = a fir all n there exists N20 where if n>N then $0 < |x_n - a| < \delta$ a-8 a Xn at8 So it n> N, then | f(xn) - L | < E. Su, $\lim_{n\to\infty} f(x_n) = L$. $l(m f(x_n) = L$ 2) => (1) : Suppose that contained for every sequence (xn) $\alpha \Pi \Lambda$ in D, with xn = a for and $\lim_{n\to\infty} x_n = \alpha$.

lim H(x)=L We must show Suppose lim f(x) \(\pm \). Let's Show this leads to a contradiction Since $\lim_{x \to a} f(x) \neq L$, there exists E,>0 where no matter) 5>0 you pick, there exist some x < D Must $0<|x-\alpha|<\delta,$ with $|f(x)-L| \geq \varepsilon_0$ but



Let's construct a sequence (x_n) contained in D. Given $n \ge 1$, set $S_n = \frac{1}{n}$. Given above, there will exist From above, there will exist $X_n \in D$ with $0 < |x_n - a| < S_n$ and $|f(x_n) - L| \ge \varepsilon_0$.

Claim:
$$\lim_{n \to \infty} x_n = \alpha$$

Pf: Let $\varepsilon > 0$.

Pick $N > \frac{1}{\varepsilon}$.

Then if $n > N$, we get

 $|x_n - \alpha| < \delta_n = \frac{1}{N} \le \frac{1}{N}$

Note also that $1 + (x_n) - L > \varepsilon_0$ for all n.

So we've created a sequence (Xn) contained in D, with $x_n \neq \alpha$ for all n, and $x_n \rightarrow \alpha$ but lim f(xn) + L. Contradiction! Thus, $\lim_{x \to a} f(x) = L$

Theorem: Let D = R and a be a limit point of D. Let $f:D \to \mathbb{R}$ and $g:D \to \mathbb{R}$. Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. (i) $\lim_{x \to a} [cf(x)] = cL$, where ceR. Then:

(2) $\lim_{x \to a} \left[f(x) + g(x) \right] = L + M$

(3) $\lim_{x \to a} \left[f(x)g(x) \right] = LM$

(4) $\lim_{x \to \alpha} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{M}$, where

 $M \neq 0$ and $g(x) \neq 0$ for all $x \in D$.

Proof: We use the function-- sequence theorem. Let (Xn) be a sequence contained in D, with $x_n \neq a$, and $x_n \rightarrow a$. Since lim f(x)=L and lim g(x)=M, x+a by the function-sequence theorem $\lim_{n\to\infty} f(x_n) = L$ and $\lim_{n\to\infty} g(x_n) = M$ By the algebra of sequences theorem

The ungerthat

We get that $\lim_{n \to \infty} cf(x_n) = c \cdot \lim_{n \to \infty} f(x_n) = c L$

 $\lim_{n\to\infty} \left[f(x_n) + g(x_n) \right] = \lim_{n\to\infty} f(x_n) + \lim_{n\to\infty} g(x_n)$ =L+M $\lim_{n \to \infty} f(x_n) g(x_n) = \lim_{n \to \infty} f(x_n) \cdot \lim_{n \to \infty} g(x_n)$ = L. M Reapply the function-sequence limit theorem to get (1), (3), We can de this because (xn) was arbitrary. For (4), suppose M ≠0 and $g(x) \neq 0$ for $x \in D$. Since (xn) is contained in D We get $g(x_n) \neq 0$ for all n. By the algebra of seguences thm

$$\lim_{n \to \infty} \left[\frac{f(x_n)}{g(x_n)} \right] = \lim_{n \to \infty} \frac{f(x_n)}{\lim_{n \to \infty} g(x_n)} = \frac{L}{M}$$

Reapply the function-sequence
limit theorem to get (4),
that is
lim
$$\frac{f(x)}{g(x)} = \frac{L}{M}$$

xta