Math 4570

$$
12 / 5 / 22
$$

Last thing about eigenvalues
Let V be a finite-dimensional vector space over a field F. Let $T: V \rightarrow V$ be a linear transformation.
Then:
(1) Let λ be an eigenvalue of T. Then,

$$
\begin{aligned}
& \text { (1) Let } \lambda \text { be an eigenvalue of } 1 \leqslant(\underbrace{\left(\begin{array}{l}
\text { geometric multiplicity } \\
\text { of } \lambda
\end{array}\right.}_{\operatorname{dim}\left(E_{\lambda}(T)\right)}) \leqslant \underbrace{\left(\begin{array}{c}
\text { algebraic multiplicity }
\end{array}\right)}_{\begin{array}{l}
\text { multiplicity of } \lambda \\
\text { as a coot of } \\
\text { the characteristic } \\
\text { polynomial }
\end{array}}
\end{aligned}
$$

(2) T is diagonalizable if

$$
\binom{\text { geometric multi. }}{\text { of } \lambda}=\left(\begin{array}{cc}
\text { alg } . & \text { molt } \\
\text { of } \lambda
\end{array}\right)
$$

for all eigenvalues λ of T

HF 5
(1)(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, $T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}3 a+b \\ 3 b \\ 4 c\end{array}\right)$
(i) Find the eigenvalues of T

Let $\beta=\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]$.
Let's calculate $[T]_{\beta}$.

$$
\begin{aligned}
& \text { Let's calculate } \\
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)=3 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \ll \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)=1\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \leftarrow\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)=0\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \leftarrow
\end{aligned}
$$

So,

$$
[T]_{\beta}=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Thus,

$$
f_{T}(\lambda)=\operatorname{det}\left([T]_{\beta}-\lambda I_{3}\right)
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
3-\lambda \\
0 & 1 & 0 \\
0 & 3-\lambda & 0 \\
0 & 4-\lambda
\end{array}\right) \\
& \left(\begin{array}{ll}
+ & - \\
\vdots \\
- \\
t & + \\
- & +
\end{array}\right) \\
& \text { Texpand on column } 1 \\
& =\underbrace{(3-\lambda)\left|\begin{array}{cc}
3-\lambda & 0 \\
0 & 4-\lambda
\end{array}\right|}_{\left(\begin{array}{ccc}
3-\lambda & 1 & 0 \\
0 & 3-\lambda & 0 \\
0 & 0 & 4-\lambda
\end{array}\right)}-0\left|\begin{array}{cc}
1 & 0 \\
0 & 4-\lambda
\end{array}\right|+0\left|\begin{array}{cc}
1 & 0 \\
3-\lambda & 0
\end{array}\right| \\
& =(3-\lambda)[(3-\lambda)(4-\lambda)-(0)(0)]+0+0 \\
& =(3-\lambda)(3-\lambda)(4-\lambda) \\
& =-(\lambda-3)^{2}(\lambda-4)
\end{aligned}
$$

$\left\{\begin{array}{c|c}\text { Eigenvalue } & \text { algebraic multiplicity } \\ \hline \lambda=3 & 2 \\ \hline \lambda=4 & 1\end{array}\right.$
(ii) Find a basis for each eigenspace.

Let's stunt with $E_{3}(T)$
We have

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in E_{3}(T) \text { inf } T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =3\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
\text { iff }\left(\begin{array}{c}
3 a+b \\
3 b \\
4 c
\end{array}\right) & =\left(\begin{array}{l}
3 a \\
3 b \\
3 c
\end{array}\right) \\
\text { iff }\left(\begin{array}{l}
b \\
0 \\
c
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

So, $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in E_{3}(T)$ if

$$
\begin{aligned}
& b=0 \\
& c=0 \\
& a \in \mathbb{R}
\end{aligned}
$$

So, $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in E_{3}(T)$
iff $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}a \\ 0 \\ 0\end{array}\right)=a\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
So, $E_{3}(T)=\operatorname{span}\left(\left\{\left(\begin{array}{ll}1 \\ 0 \\ 0\end{array}\right)\right\}\right)$.
Let $\beta_{1}=\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right] \leftarrow \begin{aligned} & \text { One non-zero Vector } \\ & \text { How } 2 \# 6 \text {, this is } \\ & \text { a basis }\end{aligned}$
What about $E_{y}(T)$?

$$
E_{4}(T)=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=4\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right.\right\}
$$

$$
\begin{aligned}
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{c}
3 a+b \\
3 b \\
4 c
\end{array}\right)=\left(\begin{array}{l}
4 a \\
4 b \\
4 c
\end{array}\right)\right.\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{c}
-a+b \\
-b \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\} \\
& =\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, \begin{array}{r}
-a+b=0 \\
-b=0
\end{array}\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\, \begin{array}{cc}
\begin{array}{rl}
a-b=0 \\
b=0
\end{array}
\end{array}\right.\right\}
\end{aligned}
$$

$(a)-b=0 \quad$ leading variables: a, b (b) $=0$ free vmiables: c

$$
\begin{aligned}
& a=b \\
& b=0 \\
& c=t
\end{aligned} \quad t \in \mathbb{R}
$$

So,

$$
\begin{aligned}
& c=t, t \in \mathbb{R} . \\
& b=0 \\
& a=b=0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E_{4}(T) & =\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
t
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\} \\
& =\left\{\left.t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\} \\
& \left.=\operatorname{span}\left(\left\{\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}\right)
\end{aligned}
$$

basis for $E_{4}(T)$ is $\beta_{2}=\left[\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]$

Summary

Note: T is not diagonalizable because (geometric mull of $\lambda=3$) $\neq($ algebraic molt of $\lambda=3$)
$T: V \rightarrow W$ lin. transformation

One-to-one: T is $1-1$ iff $N(T)=\{\overrightarrow{0}\}$

$$
\text { iff } \underbrace{\operatorname{dim}(N(T))}_{\text {nullity of }}=0
$$

onto: T is unto iff $R(T)=W$

$$
\text { iff } \underbrace{\operatorname{dim}(R(T))}_{\operatorname{rank}(T)}=\operatorname{dim}(W)
$$

rank-nullity thm

$$
\operatorname{dim}(V)=\operatorname{dim}(N(T))+\operatorname{dim}(R(T))
$$

