Math 4570 11/28/22

$$\begin{array}{c} \left(\begin{array}{c} \operatorname{Recall} from | ast time... \right) \\ T: | \mathbb{R}^{3} \to \mathbb{R}^{3} & \text{characteristic poly} \\ T\left(\begin{array}{c} \frac{a}{c} \right) = \begin{pmatrix} -2c \\ a+2b+c \\ a+3c \end{pmatrix} & f_{T}(\lambda) = -\lambda^{3}+5\lambda^{2}-8\lambda+4 \\ = -(\lambda-1)(\lambda-2)^{2} \end{array} \right) \\ \hline \\ \begin{array}{c} Eigen values \\ \lambda=1 \ \leftarrow \ algebraic \ mult. \ is \ l \\ \lambda=2 \ \leftarrow \ algebraic \ mult. \ is \ 2 \end{array} \right) \\ \hline \\ \begin{array}{c} eigen values \\ \lambda=2 \ \leftarrow \ algebraic \ mult. \ is \ 2 \end{array} \right) \\ \hline \\ \begin{array}{c} eigen values \\ \lambda=2 \ \leftarrow \ algebraic \ mult. \ is \ 2 \end{array} \right) \\ \hline \\ \begin{array}{c} eigen values \\ \lambda=2 \ \leftarrow \ algebraic \ mult. \ is \ 2 \end{array} \right) \\ \hline \\ \begin{array}{c} eigen values \\ \lambda=2 \ \leftarrow \ algebraic \ mult. \ is \ 2 \end{array} \right) \\ \hline \\ \begin{array}{c} eigen values \\ E_{1}(T) \ has' \ basis \ \beta_{1} = \left[\begin{pmatrix} -2 \\ 1 \end{pmatrix} \right] \\ geometric \ multiplicity \ of \ \lambda=1 \\ is \ dim \left(E_{1}(T) \right) = 1 \end{array} \right) \\ \hline \\ \begin{array}{c} Now \ we \ continue \ and \ calculate \\ an \ ordered \ basis \ for \ E_{2}(T). \\ we \ haue \\ E_{2}(T) = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \ T\left(\begin{array}{c} a \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} a \\ b \\ b \\ c \end{pmatrix} \right\} \\ \hline \\ T(x) = 2x \\ \lambda=2 \end{array} \right) \end{array}$$

Solve for leading variables and give free variables a new name a = -c b = t c = S 3Back-substitute: $(3) \subset = S$ (2) b=t $(\hat{I}) \alpha = -c = -S$ So, $\binom{9}{2} \in E_2(T)$ iff $\binom{9}{2} = \binom{-S}{5}$ where $s, t \in \mathbb{R}$. $iff \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \quad \begin{pmatrix} -S \\ o \\ S \end{pmatrix} + \begin{pmatrix} 0 \\ t \\ o \end{pmatrix}$ $= s \begin{pmatrix} -l \\ o \\ l \end{pmatrix} + t \begin{pmatrix} o \\ l \\ o \end{pmatrix}$ Let $\beta_2 = \begin{bmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}$. From above β_2 spans $E_2(T)$. By HW 2 #5 since (-1), (?) are not multiples of each other they form a linearly independent set. So, P_2 is a basis for $E_2(T)$.

Svmmary:

Eigenvalues
$$\lambda = |$$
 $\lambda = 2$ algebraic
multiplicity $|$ Z basis for $E_{\lambda}(T)$ $B_{i} = [\begin{pmatrix} -z \\ i \end{pmatrix} \end{bmatrix}$ $B_{2} = [\begin{pmatrix} -1 \\ 0 \end{pmatrix}] \begin{pmatrix} 0 \\ 0 \end{pmatrix}]$ geometric
multiplicity Z $dim(E_{i}(T))$ $dim(E_{2}(T))$

Note that algebraic multiplicity of
$$\lambda$$

= geometric multiplicity of λ

for both
$$\lambda's$$
.
This will allow us to diagonalize T.
Let
 $B = B_1 \cup B_2 = \begin{bmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 B_1
 B_1
 B_2

We will prove a theorem later that in this
situation B is a basis for
$$\mathbb{R}^3$$
.
I claim that B will diagonalize T.
We need to compute $(T]_{B}$.
 $T\begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$
 $T\begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$
 $T\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$
Plug B into T Write answer in terms of B
So, $[T]_{B} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix}$ We diagonalized
T !

$$E_{X}: Let T: P_{2}(R) \rightarrow P_{2}(R) \qquad F = R$$
Where $T(f) = f'$. That is,
 $T(a+bx+cx^{2}) = b+2cx$.
We know from before that T is linear.
Let's find the eigenvaluer of T.
Let $Y = [1, X, X^{2}]$. $f(x) = 1 = 1 + 1 + 0 + X + 0 + X^{2}$
We have
 $T(x) = 1 = 1 + 1 + 0 + X + 0 + X^{2}$
 $T(x^{2}) = 2x = 0 + 1 + 2 + X + 0 + X^{2}$
So,
 $[T]_{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Then,

$$f_{T}(\lambda) = det \left(\begin{bmatrix} T \end{bmatrix}_{\gamma} - \lambda T_{3} \right)$$

$$= det \left(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$$

$$= det \left(\begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & -\lambda \end{pmatrix} \right)$$

$$= det \left(\begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & -\lambda \end{pmatrix} \right)$$

$$= -\lambda \cdot \begin{vmatrix} -\lambda & 2 \\ 0 & -\lambda \end{vmatrix} - 0 + 0$$

$$= -\lambda \left[(-\lambda)(-\lambda) - (2)(0) \right]$$

$$= -\lambda^{3}$$