Math 4570 11/28/22
(Recall from last time...)

Eigenvalues
$\lambda=1 \leftarrow$ algebraic mull. is 1
$\lambda=2 \leftarrow$ algebraic molt. is 2
$E_{1}(T)$ has vas is $\beta_{1}=\left[\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)\right]$
geometric multiplicity of $\lambda=1$ is $\operatorname{dim}\left(E_{1}(T)\right)=1$

Now we continue and calculate an ordered basis for $E_{2}(T)$.

We have

$$
E_{2}(T)=\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\, \underbrace{T\binom{a}{c}=2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)}_{\substack{T(x)=2 x \\
\lambda \\
\lambda \\
c}}\right.\}
$$

$$
\begin{aligned}
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
-2 c \\
a+2 b+c \\
a+3 c
\end{array}\right)=\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right)\right.\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \left\lvert\,\left(\begin{array}{cc}
-2 a & -2 c \\
a & +c \\
a & +c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\}
\end{aligned}
$$

We need to solve

$$
\begin{aligned}
& \begin{array}{ccc}
-2 a & -2 c & =0 \\
a & +c & =0 \\
a & +c & =0
\end{array} \\
& \left(\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \xrightarrow{-\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
11 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \\
& \underset{\text { make there } 0}{-R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This becomes
(a)
$+c=0$ $0=0$ $0=0$
leading variables: a free variables: b, c

Solve for leading variables and give free variables a new name

$$
\begin{align*}
& a=-c \tag{1}\\
& b=t \tag{2}\\
& c=s \tag{3}
\end{align*}
$$

Back-substitule:
(3) $c=s$
(2) $b=t$
(1) $a=-c=-5$

So, $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in E_{2}(T)$ iff $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-s \\ t \\ s\end{array}\right) \quad \begin{gathered}\text { where } \\ s, t\end{gathered}$ $s, t \in \mathbb{R}$.
iff $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-s \\ 0 \\ s\end{array}\right)+\left(\begin{array}{l}0 \\ t \\ 0\end{array}\right)$

$$
=s\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Let $\beta_{2}=\left[\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right]$. From above β_{2} spans $E_{2}(T)$.
By HW 2 \#S since $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are not multiples of each other they form a linearly independent set. So, β_{2} is a basis for $E_{2}(T)$.

SUmmary:

Note that algebraic multiplicity of λ $=$ geometric multiplicity of λ
for both λ 's.
This will allow us to diagonalize T.
Let

$$
\beta=\beta_{1} \cup \beta_{2}=[\underbrace{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)}_{\beta_{1}}, \underbrace{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}_{\beta_{2}}]
$$

We will prove a theorem later that in this situation β is a basis for \mathbb{R}^{3}.
I claim that β will diagonalize T.
we need to compute $[T]_{\beta}$.

$$
\begin{aligned}
& T\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=1 \cdot\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=1 \cdot\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)+0 \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+0 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& T\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=2 \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=0 \cdot\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)+2 \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+0 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& T\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right)=2 \cdot\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right)=0 \cdot\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)+0 \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+2 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

ploy β into T write answer in terms of β
So, $[T]_{\beta}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right) \curvearrowright \begin{gathered}\text { We diagonalized } \\ T \text { ! }\end{gathered}$

Ex: Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}) \quad F=\mathbb{R}$ where $T(f)=f^{\prime}$. That is,

$$
T\left(a+b x+c x^{2}\right)=b+2 c x
$$

We know from before that T is linear.
Let's find the eigenvalues of T.
Let $\gamma=\left[1, X, x^{2}\right] . \longleftarrow \begin{aligned} & \text { standard } \\ & \text { basis for } \\ & P_{2}(\mathbb{R})\end{aligned}$
Let's find $[T]_{\gamma}$
We have

$$
\begin{aligned}
& \text { We have } \\
& T(1)=0=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
& T(x)=1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
& T\left(x^{2}\right)=2 x=0.1+2 \cdot x+0 \cdot x^{2}
\end{aligned}
$$

So,

$$
[T]_{\gamma}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Then,

$$
\begin{aligned}
& f_{T}(\lambda)=\operatorname{det}\left([T]_{\gamma}-\lambda I_{3}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 2 \\
0 & 0 & -\lambda
\end{array}\right) \\
& \left(\left(\begin{array}{l}
+ \\
+ \\
\hline+ \pm \\
+ \\
+ \\
-+
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -\lambda
\end{array}\right)\right. \\
& =-\lambda \cdot\left|\begin{array}{cc}
-\lambda & 2 \\
0 & -\lambda
\end{array}\right|-0+0 \\
& =-\lambda[(-\lambda)(-\lambda)-(2)(0)] \\
& =-\lambda^{3}
\end{aligned}
$$

So, $f_{T}(\lambda)=-\lambda^{3}=-(\lambda-0)^{3}$
The only eigenvalue is $\lambda=0$ which has algebraic multiplicity equal to 3 .
And,

$$
\begin{aligned}
E_{0} & (T)= \\
= & \left\{a+b x+c x^{2} \mid T\left(a+b x+c x^{2}\right)=0 \cdot\left(a+b x+c x^{2}\right)\right\} \\
& =\{a+b x+c x^{2} \mid \underbrace{b+2 c x=0+0 x+0 x^{2}}_{\text {gives } b=0, c=0}\} \\
& =\{a \mid a \in \mathbb{R}\} \\
& =\{a \cdot 1 \mid a \in \mathbb{R}\} \\
& =\operatorname{span}(\{1\})
\end{aligned}
$$

So, $\beta=[1]$ is a basis for $E_{0}(T)$.

