Math 4550 9/3/25

For the general dihedral group D_{2n} with n>3 we have:

$$D_{2n} = \left\{ 1, r, r^{2}, r, r^{n-1}, s, sr, sr^{2}, sr^{n-1} \right\}$$

where

$$r^{n} = 1$$

$$s^{2} = 1$$

$$r = r$$

$$r^k S = Sr^{-k} = Sr^{n-k}$$

For a derivation of these see the Tudon textbook section 5,2

Note: Den is non-abelian because

$$rs = sr^{n-1} \neq sr$$

$$S(Sr^{2})(Sr) = r^{2}Sr = Sr^{-2}r$$

$$S^{2}=1 = Sr^{-1}$$

$$S^{4}=1 = Sr^{4}=1$$

Let's review some Math 2550

Given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$

Then:

 $AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ 9 & h \end{pmatrix}$

 $= \begin{pmatrix} (ab) \cdot (e) \\ (cd) \cdot (e) \end{pmatrix} \qquad (cd) \cdot (f)$

= (aetbg aftbh)
cetdg cftdh)

 $\frac{\mathsf{E} \mathsf{X}}{\mathsf{O}} = \left(\begin{array}{c} 1 & -1 \\ 0 & 2 \end{array} \right) \left(\begin{array}{c} 3 & -2 \\ 4 & -3 \end{array} \right)$

$$= \left((1-1), \begin{pmatrix} 3 \\ 4 \end{pmatrix}, (1-1), \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right)$$

$$= \left((02), \begin{pmatrix} 3 \\ 4 \end{pmatrix}, (02), \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right)$$

$$= \begin{pmatrix} 1.3 - 1.4 & 1.(-2) - 1.(-3) \\ 0.3 + 2.4 & 0.(-2) + 2(-3) \end{pmatrix}$$

$$= \begin{pmatrix} 8 & -6 \end{pmatrix}$$

$$TA = AT = A$$
 for any $2x2A$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = xists \quad iff \quad det(A) \neq 0$$

$$Ad - bc \neq 0$$

$$Tf \quad A^{-1} = xists \quad then$$

$$\frac{1}{a} + \frac{1}{a} = \frac{1}{ad-bc} \begin{pmatrix} -c & a \end{pmatrix}$$

Ex:
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$

 $det(A) = 1.3 - (-1).2 = 5$
Since $det(A) \neq 0$, $A^{-1}exists$
 $A^{-1} = \frac{1}{5} \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3/5 & 1/5 \\ -2/5 & 1/5 \end{pmatrix}$

For any A, B we know; det(AB) = det(A). det(B) 2550 Review done

Theorem: Let
$$GL(2,1R) = \{(ab) \mid a,b,c,d \in IR\}$$

$$ad-bc\neq 0\}$$

be the set of ZxZ invertible matrices with entries from the real numbers. It's called the general linear

9100P.

Then GL(Z,IR) is a group under multiplication. The identity is $I = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

The inverse of
$$\begin{pmatrix} ab \\ cd \end{pmatrix}$$
 is
$$\begin{pmatrix} ab \\ -c \\ a \end{pmatrix}$$

Proof: see unline notes

G-L(2,1R)

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 11 & 10 \\ 0 & e \end{pmatrix}$

$$(2)$$
 $(1/2)$ $(1/2)$ (5)

infinitely many more

Note:

$$\begin{array}{cccc}
A & B \\
\hline
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} & \text{not equal} \\
\hline
\begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ -1 & -2 \end{pmatrix}
\end{array}$$

Here AB # BA. GL(2, IR) is not abelian

Examples so far

groups under addition

IR

Q

Z

Z

500p under composition

Dan (not abelian)

Theorem: Let <G, *> be a group. Then:

- 1) The identity e is unique.
- 2) For each element a EG there exists a unique inverse which we will denote by a.
- (3) If $a \in G$, then $(a')^{-1} = a$
- (4) If $a, b \in G$, then $(a * b)^{-1} = (b^{-1}) * (a^{-1})$

P100f:

(1) Suppose e,, e, E G are both identity elements.

Then,

$$e_1 * \alpha = \alpha * e_1 = \alpha$$
 $e_2 * \alpha = \alpha * e_2 = \alpha$
 $f_{or} \; \alpha | \alpha \in G$.

Then,

$$e_1 = e_1 \times e_2 = e_2$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$\alpha = \alpha * e_2 \qquad \qquad e_1 * \alpha = \alpha$$

$$a * b_1 = b_1 * a = e$$

 $a * b_2 = b_2 * a = e$

Ihus, $a*b_1 = e = a*b_2$ Apply bz to the left of both sides: $b_2 * (a * b_1) = b_2 * (a * b_2)$ By associativity $\begin{pmatrix} b_2 * \alpha \end{pmatrix} * b_1 = \begin{pmatrix} b_2 * \alpha \end{pmatrix} * b_2$ S_0 , $e * b_1 = e * b_2$. Thus, b, = b2

$$(\bar{\alpha}') * \alpha = e$$
 and $\alpha * (\bar{\alpha}') = e$
by definition
 $(\bar{\alpha}')^{-1} = \alpha$.

4) We have
$$(a*b)*(5'*a') \\
= (a*b)*b')*a'' \\
= (a*(b*b'))*a'' \\
= (a*e)*a''$$

 $= \alpha * \alpha$

$S_{0}, (\alpha * b)^{-1} = b^{-1} * a^{-1}$

Notation: When dealing with an abstract group (G,*) we will make the following conventions.

- We will just write ab instead of axb. For example, aabcab means axaxbxcxaxb.
- By associativity we never
 need to use parenthesis.
- If n is a positive integer, then

$$a^{n} = \underline{aaaa...a}$$
 $a^{n} + \underline{aaa...a}$
 $a^{n} = \underline{aaa...a}$
 $a^{n} + \underline{aaa...a}$

$$\alpha^{\circ} = e$$

For example:
$$a = aaa$$

$$a' = a'a'a'a'$$

- Wc will also just say "Let G be a group" and not write *.
- o In HWI I Kept the X notation but after HWI We Won't use it anymore.