Math 4550 9/24/25

Topic 4- Homomorphisms

Def: Let G, and G_z be groups. A function $\varphi: G_1 \to G_2$ is called a homomorphism if $\varphi(ab) = \varphi(a) \varphi(b)$ For all $a, b \in G_1$.

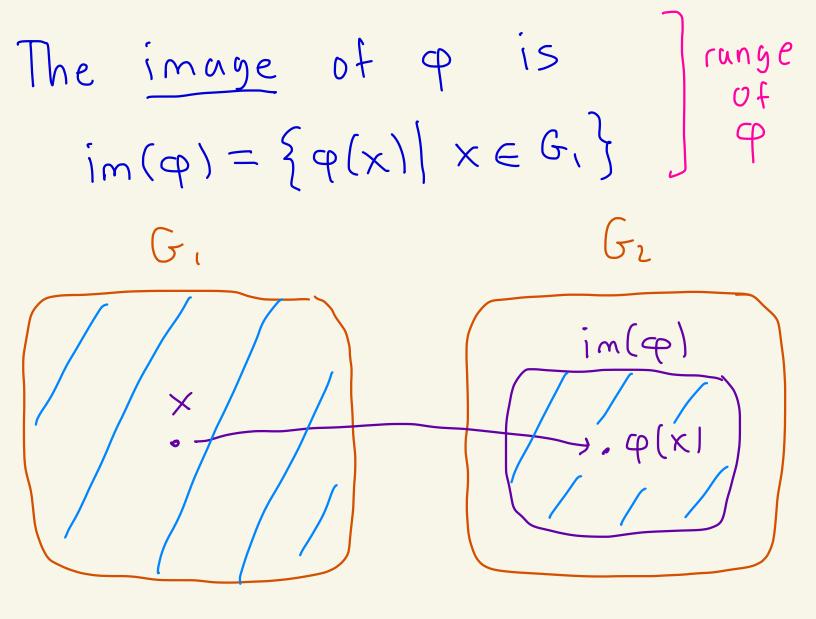
$$G$$
 φ
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$
 $\varphi(a)$

Note: If G, has operation *,
and Gz has operation *z

then the homomorphism

condition can be written $\varphi(a \times b) = \varphi(a) \times \varphi(b)$

The <u>kernel</u> of φ is $\operatorname{ker}(\varphi) = \left\{ x \in G_1 \mid \varphi(x) = e_2 \right\}$ where ez is the identity of Gz



If φ is one-to-one and onto, then we call φ an isomorphism and we say that G_1 and G_2 are isomorphic and write $G_1 \cong G_2$.

Ex: Consider the groups and Uz. · Imultiplication

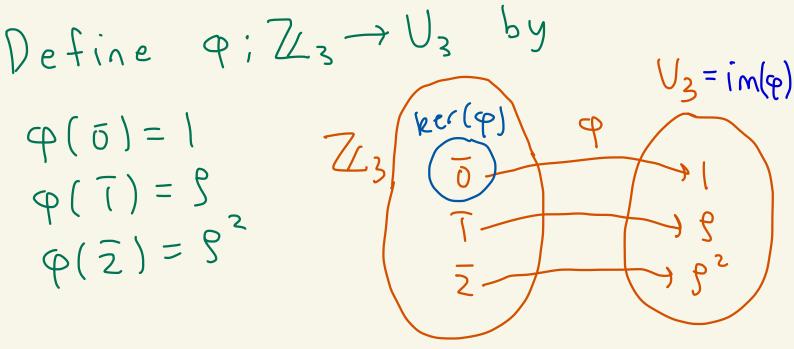
USE;

Z/3	5	1	2
0	- 0	7	2
1	T	2	0
2	-2	0	

addition

Uz	1	9	52
		5	35
9	9	52	1
62	92)	8
		-	

q(ō)=1 $\beta = (1) \varphi$ P(2) = 92



Here φ is 1-1 and onto. Let's check that φ is a homomorphism.

Show $\varphi(\overline{x}+\overline{y})=\varphi(\overline{x})\varphi(\overline{y})$ for all $\overline{x},\overline{y}\in\mathbb{Z}_3$.

We have:

$$\varphi(\bar{0}+\bar{0}) = \varphi(\bar{0}) = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{0}+\bar{1}) = \varphi(\bar{1}) = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{1})
\varphi(\bar{0}+\bar{2}) = \varphi(\bar{2}) = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{2})
\varphi(\bar{0}+\bar{2}) = \varphi(\bar{2}) = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{1}+\bar{0}) = \varphi(\bar{1}) = |-|\cdot| = \varphi(\bar{0}) = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{1}+\bar{0}) = \varphi(\bar{2}) = |-|\cdot| = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{1}+\bar{1}) = \varphi(\bar{0}) = |-|\cdot| = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{1}+\bar{1}) = \varphi(\bar{0}) = |-|\cdot| = |-|\cdot| = |-|\cdot| = \varphi(\bar{0}) \varphi(\bar{0})
\varphi(\bar{1}+\bar{1}) = \varphi(\bar{0}) = |-|\cdot| =$$

Thus, φ is a homomorphism.

Since φ is 1-1 and onto, φ is an isomorphism.

So, $\mathbb{Z}_3 \cong \mathbb{V}_3$. Ψ is invertible. Ψ is invertible.

Ex: Let
$$\varphi$$
: $ZL \rightarrow Z$
be defined by $\varphi(x) = 2x$

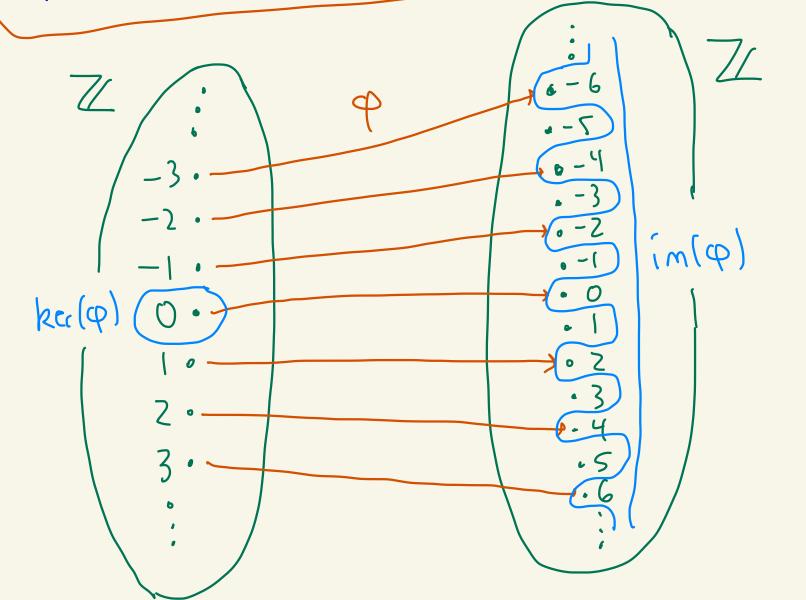
claim: q is a homomorphism.

Proof:

Let x, y ∈ Z.

Then,

Then,
$$\varphi(x+y) = 2(x+y) = 2x+2y = \varphi(x)+\varphi(y).$$



$$ker(\varphi) = \{0\}$$

 $im(\varphi) = \{2\} = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$
 $also called 27/2$

$$\varphi \text{ is } 1-1:$$
Suppose $\varphi(x) = \varphi(y).$
Then, $Zx = 2y.$
So, $X = y.$

$$\begin{cases} f & \text{is } |-1| \\ f(x) = f(y) \\ f(x) = f(y) \end{cases}$$

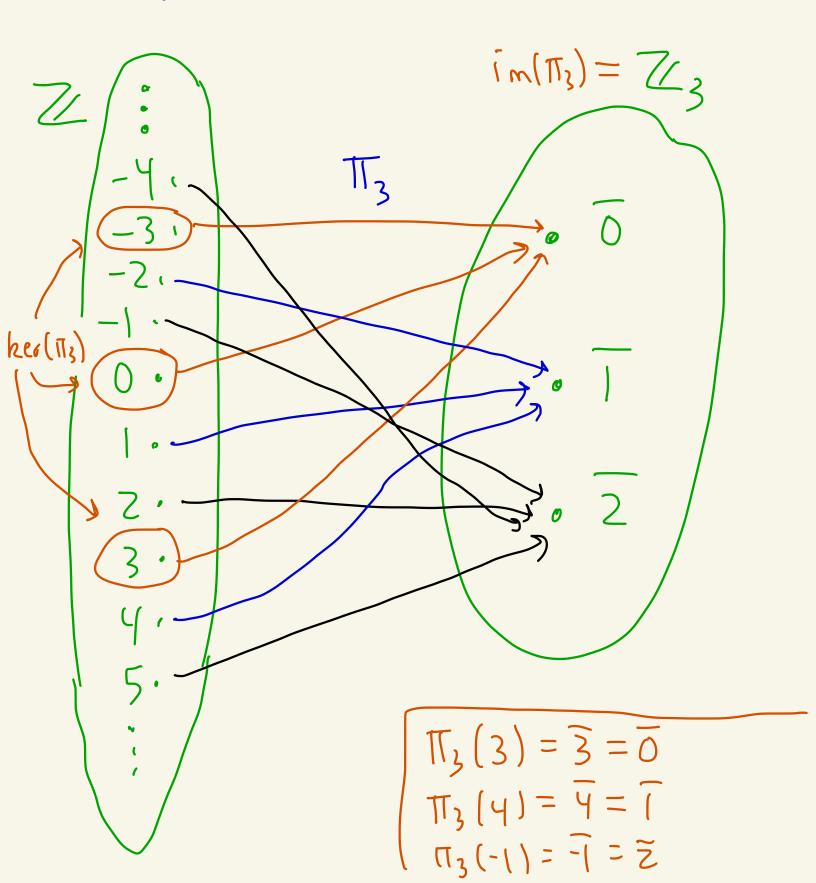
$$\begin{cases} f(x) = f(y) \\ f(x) = f(y) \\ f(x) = f(y) \end{cases}$$

q is not onto since im(q) \neq Z

prot an isomorphism

Ex: Define
$$T_3: \mathbb{Z} \to \mathbb{Z}_3$$

by $T_3(x) = \overline{x}$.



TT3 is not 1-1.

Mz is a homomorphism:

 $TT_3(X+Y) = \overline{X+Y} = \overline{X} + \overline{Y} = TT_3(X) + TT_3(Y)$

$$|\ker(\pi_3)| = \langle 3 \rangle = \{ ..., -6, -3, 0, 3, 6, ... \}$$

= 37/

$$im(\pi_3) = \mathbb{Z}_3$$