Math 4550 10/29/25

Theorem: Let H be a subgroup of a group G. Then the following are equivalent.

(1) H is normal.

(2) gHg'=H for all geG

3 g Hg'= H for all ge G

Where

Proof:

Assume H is normal.

That is, assume gH=Hg for all g∈G.

Fix some 9EG.

We will show that gHg'= H.

Let yEgHg.

Then, y=9hg where heH. We have that ghegH and gH=Hg, thus ghe Hg. Thus, gh=h,g where h, EH. So, $y = ghg^{-1} = (gh)g^{-1} = (h_1g)g^{-1} = h_1 \in H$. Thus, 9Hg = H. $(2 \Rightarrow 3)$ Assume that $x H x' \subseteq H$ for all $x \in G$. The we must show that x H x' = H for all $x \in G$. This comes down to showing that $H \subseteq X H X^T$ for all $X \in G$. Let ge G be fixed. Let's show $H \subseteq 9 Hg^{-1}$. Let heH. - Using assumption with x=g-1 $g'hg = g'h(g')^{-1} \in H$

Thus, $g'hg = h_2$ Where $h_2 \in H$.

Then, $g(g'hg)g' = gh_2g'$.

So, $h = gh_2g'$ Hence $h \in gHg'$.

Thus, $H \subseteq gHg'$.

(350)

Assuming xHx'=H for all $x \in G$. \Leftrightarrow We will show that H is normal. Let $g \in G$. We will show that gH=Hg.

9 H = Hg :

Let y∈gH.

Then y=gh where h∈H.

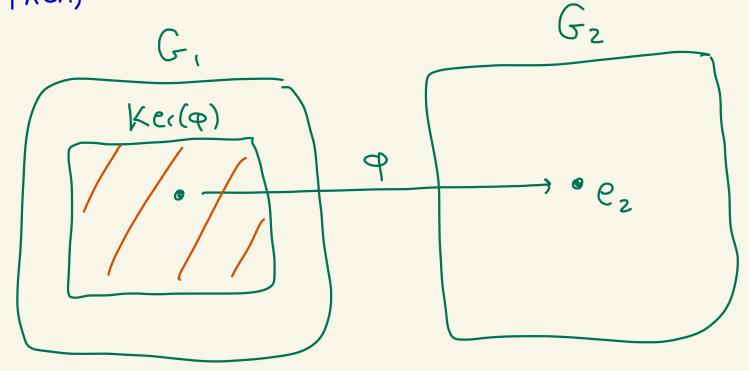
By assumption gHg'= H. + (using x=g) Since ghg' \(\) \ Thus, $ghg' = h_3$ where $h_3 \in H$. So, gh = h39. Thus, y=gh=hzg∈Hg. Thus, gH = Hg. Hy = 9 H/: Let Z∈Hg. Then, Z=h'g where h'∈H. By assumption g'Hg=H + vsing X=g' in assumption Since g'hg E g'Hg we xHx'=H Since g'hgeg'Hg we Know ging & H. Thus, g'h'g=hy where hy EH. Then, h'g = gh4. So, z=h'g=ghy EgH. Thus, Hg = gH.

Therefore, gH = Hy and H is normal.

Theorem: Let G, and G2 be groups.

Let p: G, -> Gz be a honomorphism.

Then, Ker(q) 4 G.



Recall $ker(\varphi) = \left\{ x \in G_1 \mid \varphi(x) = e_2 \right\}$

Proof:

Let H=ker(q).

We previously showed that H is a

subgroup of G1. Let's show that H is normal in G. From the previous theorem we will show that $9Hg' \subseteq H$ for all $g \in G_1$ Let x e g Hg. Then, x = ghg' where he H. $= \varphi(ghg')$ $= \varphi(g) \varphi(h) \varphi(g')$ $= \varphi(g) \varphi(g') \iff heH = ker(\varphi)$ $= \varphi(g) \varphi_2 \varphi(g') \iff heH = ker(\varphi)$ Then, $\varphi(x) = \varphi(ghg^{-1}) -$ = $\varphi(g)\varphi(g')$ $= \varphi(gg')$ $= \varphi(gg')$ $= \varphi(gg')$ = $\varphi(e_i)$ = e_i identity of G_i = ez = fact about homomorphisms Thus, X E Ker(q) = H. So, gHg'=H no matter what g is.

Thus, H= ker(q) is normal in G1

