Math 4550 10/22/25

Theorem: Let G be a group and $H \leq G$. Let a, b $\in G$. Then: () a e a H iff baeH (or a'beH) (2) a H = b H iff $a \in bH$ (or $b \in aH$) (3) aH = bH (4) aH = bH iff a=bh for some (5) The set of left cosets partitions G. That is, G=UgH 966 any two left cosets given and

aH and bH either aH \cap bH = ϕ or aH = bH.

6) If H is finite, then |aH| = |H| = |Ha|

proof: Let e be the identity of G.

① Since $H \leq G$, we know $e \in H$.
Thus, $a = ae \in aH$.

(D) Suppose aH=bH.

By part 1, a E a H.

Since aH=bH we get a EbH.

Thus, a = bh where h ∈ H. S_{0} , $b_{\alpha} = b_{\beta}bh$. Thus, b'a = h. So, b'a = H. (\ Suppose b'a = H. Then, ba=h for some heH. We need to show that att= btt. So, $\alpha = bh$ $aH \subseteq bH$. First we show Let ZEaH. Then, Z=ah, where h, EH.

So, $z = ah_1 = (bh)h_1 = b(hh_1)$ Since HEG and h, h, EH we know hh, EH. So, Z = b(hh,) ∈ bH. in H Hence aH = bH. Let's now show bH = aH. Pick yEbH. Then, $y = bh_2$ where $h_2 \in H$. Since a=bh we know b = ah and also We know h'EH.

So, $y = bh_2$ $= (\alpha h^{-1}) h_2$ $= \alpha (h^{-1}h_2) \in \alpha H$ $= \alpha (h^{-1}h_2) \in \alpha H$ $= \alpha (h^{-1}h_2) \in \alpha H$ because $H \leq G$

Then, bH = aH.

Since aH = bH.

We have aH = bH.

- (3) HW
 - 9 HW

(5) Given 9 EG, We have gH={gh|heH} = G

① 293 ≤ 9 H So, $G = \bigcup \{g\} \subseteq \bigcup gH \subseteq G$ 4 geg geg4 9EG $Ex: \mathbb{Z}_{3} = \{ \bar{o}_{3}, \bar{\tau}_{3} \}$ $\mathbb{Z}_{3} = \{ \bar{o}_{3}, \bar{\tau}_{3} \}$ Thus, G = UgH. Let a, b ∈ G. Let's show either aH = bH or $aHnbH = \emptyset$.

Assume aHNbH + ϕ .

Let's show this implies aH=bH.

Since aHNbH = \$, there exists ZeaHNbH. So, ZEaH and ZEbH. Then, Z=ah, and Z=bhz where hi, hz EH. Let's show aH = bH. aH = bH: Let yeaH. Then, y = ah for some h ∈ H. We know ah, = Z = bhz. So, y = ah $= (bh_2h_1^{-1})h$

$$ah_1 = bh_2$$

$$a = bh_2h_1^{-1}$$

$$= b (h_2h_1^{-1}h) \in bH$$

$$because h_2h_1^{-1}h \in H$$
Thus, $aH \subseteq bH$.

$$bH \subseteq aH$$
:
$$Let \ x \in bH$$
.
Then, $x = bh_3$ where $h_3 \in H$.
Thus,
$$x = bh_3$$

$$= (ah_1h_2^{-1})h_3$$

$$ah_1=bh_2$$
 $ah_1h_2^{-1}=b$

= $\alpha(h_1h_2h_3) \in \alphaH$ in H $because h_1,h_2,h_3 \in H$

So, bH = aH.

Summary: If aHNbH # \$, then aH = bH.

(6) HW

Zz