Math 4550 10/15/25

We want all homomorphisms p: U6 > U4



First step is determine what $\varphi(S)$ is.

The order of Sis 6.

Su, q(9) has to have order dividing 6.

So, q(9) has to have order 1,2,3, or 6.

elements of U4	order	
X	4	$\begin{cases} \sqrt{3} = 3 \\ \sqrt{3} = 3 \end{cases}$
X ²	2	$\begin{cases} \lambda = \lambda \\ 0.0 - 0 \end{cases}$
×3	4	Sume

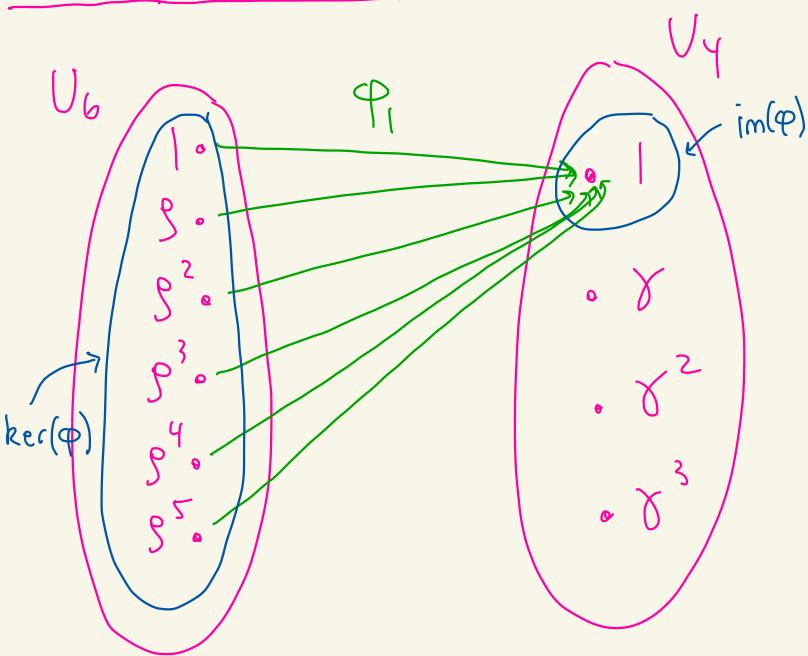
has order 4

$$\left(\chi^{2}\right)^{2} = \chi^{4} = 1$$

We have two possibilities:

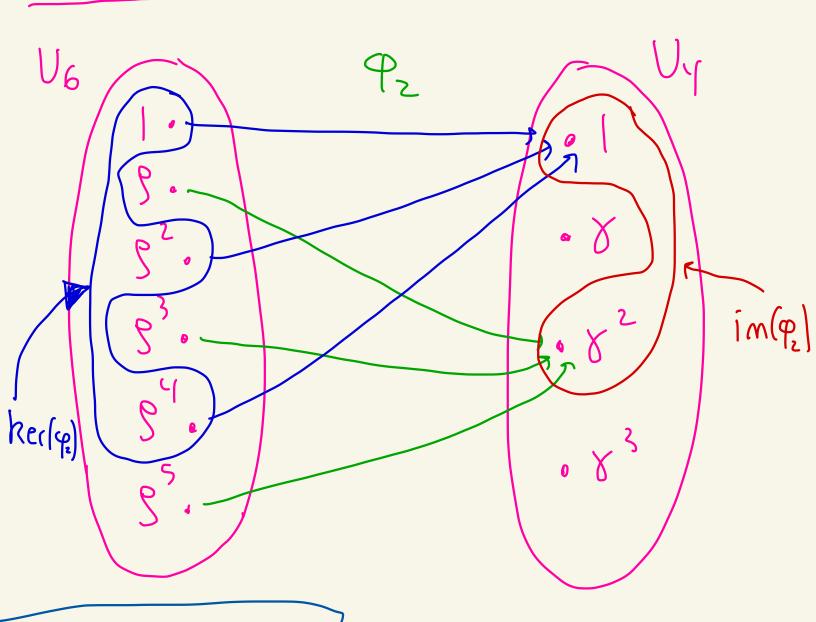
$$\varphi(g) = 1$$
 or $\varphi(g) = g^2$

Case 1:
$$\varphi_{1}(S) = 1$$



(called trivial homomorphism)

To make
$$\varphi$$
 into a homomorphism need:
 $\varphi(\xi^2) = \varphi(\xi) \varphi(\xi) = |\cdot| = |z|$
 $\varphi(\xi^3) = \varphi(\xi) \varphi(\xi) \varphi(\xi) = |\cdot| \cdot |z| = |z|$



Calculations:

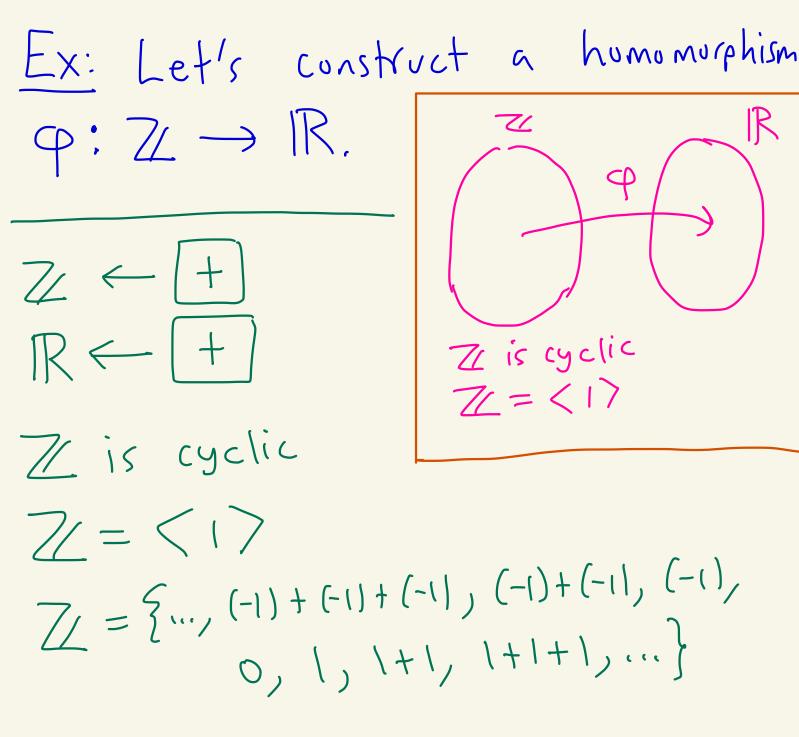
Use 84=1

$$\varphi_{2}(\varsigma^{2}) = \varphi_{2}(\varsigma) \varphi_{2}(\varsigma) = \chi^{2} \cdot \chi^{2} = \chi^{4} = 1$$

$$\varphi_{2}(\varsigma^{3}) = \varphi_{2}(\varsigma) \varphi_{2}(\varsigma) \varphi_{2}(\varsigma) = \chi^{3} \cdot \chi^{3} \cdot \chi^{3} \cdot \chi^{2}$$

$$= 1 \cdot \chi^{2} = \chi^{3}$$

 $im(\varphi_2) = \{1, \chi^2\}$



Since Z is infinite we can send I anywhere we want!

Let's do $\varphi(1) = e$.

This will force where everything

else goes in order to make q a homomorphism. For example, $\varphi(z) = \varphi(1+1) = \varphi(1) + \varphi(1) = e + e = 2e$

 $\varphi(3) = \varphi(1+1+1) = \varphi(1)+\varphi(1)+\varphi(1) = C+e+e = 3c$

 $\varphi(4) = 4e$ $\varphi(S) = Se$

What about $\varphi(0)?$ cat about $\varphi(0)$? $\varphi(0) = 0$ identity goes to

identity

What about negative integers?

 $\varphi(-1) = -\varphi(1) = -e$

 $\varphi(-2) = \varphi(-1) + \varphi(-1) = (-e) + (-e) = -2e$ $\varphi(-3) = \varphi(-1) + \varphi(-1) + \varphi(-1) = -e - e - e = -3e$ In general, $\varphi(n) = ne$ for $n \in \mathbb{Z}$ Re((P) = {0} $im(\varphi) = \langle e \rangle = \{ ..., -2e, -e, 0, e, 2e, ... \}$

HW Problem

$$Q = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$$
is not cyclic

$$Q = \text{rational #S}$$

$$Proof:$$

Suppose Q is cyclic.

Then Q =
$$\langle \frac{\kappa}{n} \rangle$$
 where $\frac{\kappa}{n} \neq 0$.

So,
$$Q = \langle \frac{\kappa}{n} \rangle = \{ \frac{\kappa}{n} \rangle - \frac{\kappa}{n} \} = \{ \frac{\kappa$$

This is nonsense, $\frac{m}{2n} \in \mathbb{Q}$ but

 $\frac{m}{2n} \notin \left\langle \frac{m}{n} \right\rangle$

Contradiction

Contradiction

Contradiction

