Math 4550 10/1/25

Schedule

	TOPIC 5
REVIEW	10/8 REVIEW
TEST 1	

Topic 5 - Cyclic groups

Theorem

Let G be a cyclic group.

If $H \leq G$, then H is cyclic

Proof:
Since G is cyclic,

$$G = \langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}$$

 $= \{..., x^2, x^2, e, x, x, ...\}$

where $x \in G$. Let $H \leq G$. We show that H is cyclic. If $H = \{e\}$, then $H = \langle e \rangle$.

Now suppose H = {e1. Then there exists a ∈ H with a ≠ e. Since $G = \langle x \rangle$ We know Rwhere k = 0. | R = 0 since a = e Note that $\overline{\alpha}' = (x^k)^{-1} = x^k \in H$ because a < H and H < G. Since k = 0, either R70 or -k70. So H contains some where n is a possitive integer. Let m be the smallest positive integer where $x^m \in H$.

$$Claim: H = \langle x^m \rangle$$

Pf of claim:

Note that $\langle x^m \rangle \subseteq H$,

because $x^m \in H$, and

thus $(x^m)^l \in H$ for any $l \in \mathbb{Z}$

because H & G.

Now let's show $H \subseteq \langle x^m \rangle$.

Let yeH.

Since $H \leq G$ and $G = \langle x \rangle$ We know $y = x^f$ where $f \in \mathbb{Z}$.

Divide minto f to get f = 9m+r

Where 9, r ∈ Z and O≤r<m. $S_0, \quad X^{\dagger} = X^{\sharp m + r} = X^{\sharp m} \times r$ Thus, $x^r = x^{-qm} x^f$ $= (x^m)^{-9} \times^f \in H$ XMEH) (y=xfeH) reasoning: $x^m \in H \rightarrow (x^m)^{-\frac{q}{2}} \in H$ $(x^m)^{-\frac{q}{2}} \in H, x^f \in H \longrightarrow (x^m)^{-\frac{q}{2}} x^f \in H$ All because $H \leq G$.

So, $x^r \in H$ and $0 \le r < m$. But m is the smallest positive power of x that is in H.

Thus,
$$r = 0$$
 $f = 0$ $f = 0$

Therefore,
$$H = \langle x^m \rangle.$$

HW: G is a group, xeG. Then: $\langle x \rangle = \langle x^{-1} \rangle$

All subgroups of \mathbb{Z}_{12} : $\langle \bar{o} \rangle = \{ \bar{o} \}$ $\langle \bar{1} \rangle = \{ \bar{o}, \bar{1}, \bar{2}, ..., \bar{11} \} = \mathbb{Z}_{12}$ $\langle \bar{2} \rangle = \{ \bar{o}, \bar{2}, \bar{4}, \bar{6}, \bar{8}, \bar{10} \}$

$$\langle \vec{3} \rangle = \{ \vec{0}, \vec{3}, \vec{6}, \vec{9} \}$$

 $\langle \vec{4} \rangle = \{ \vec{0}, \vec{4}, \vec{8} \}$
 $\langle \vec{5} \rangle = \{ \vec{0}, \vec{5}, \vec{10}, \vec{3}, \vec{8}, \vec{1}, \vec{6}, \vec{11}, \vec{4}, \vec{6} \}$
 $|\vec{7} \rangle = \{ \vec{0}, \vec{5}, \vec{10}, \vec{7} \} = \mathbb{Z}_{12}$
 $|\vec{7} \rangle = \{ \vec{0}, \vec{6} \}$
 $\langle \vec{7} \rangle = \{ \vec{0}, \vec{6} \}$
 $\langle \vec{8} \rangle = \langle \vec{4} \rangle = \{ \vec{0}, \vec{4}, \vec{8} \}$
 $|\vec{8} \rangle = \langle \vec{4} \rangle = \{ \vec{0}, \vec{4}, \vec{8} \}$
 $|\vec{9} \rangle = \langle \vec{3} \rangle, \langle \vec{10} \rangle = \langle \vec{27}, \vec{6} \rangle$
 $|\vec{9} \rangle = \langle \vec{3} \rangle, \langle \vec{10} \rangle = \langle \vec{27}, \vec{6} \rangle$

Subgroup diagram

A B Means R S A Theorem (Homomorphisms out of a cyclic group)

Let $G_1 = \langle x \rangle$ be a cyclic group. Let G_2 be any group. Let's classify all homomorphisms $\varphi: G_1 \to G_2$.

case l: Suppose x has finite order n

Pick $y \in G_2$ with order m dividing n. Then, φ ; $G_1 \rightarrow G_2$ given by $\varphi(x^k) = y^k$ is a homomorphism. Forthermore, every homomorphism from G_1 to G_2 is of this form.

Let $y \in G_2$ \leftarrow no restrictions

Define $\varphi: G_1 \rightarrow G_2$ by $\varphi(x^k) = y^k$.

Then φ is a homomorphism.

Furthermore, any homomorphism

from G_1 to G_2 is of this form.

