$$\begin{array}{rcl} 1 & 514 = 4 \cdot 120 + 34 \\ 120 &= 3 \cdot 34 + 18 \\ 34 &= 1 \cdot 18 + 16 \\ 18 &= 1 \cdot 16 + 2 & 9cd(514, 120) = 2 \\ 16 &= 8 \cdot 2 + 0 \end{array}$$

2)
$$\begin{aligned} 14 &= |\cdot|(0 - 4 \cdot 24) \\ 10 &= |\cdot 24 - (\cdot |4) \\ 4 &= |\cdot|4 - |\cdot|0 \\ 2 &= |\cdot|0 - 2 \cdot 4 \end{aligned}$$

2 = $|\cdot|0 - 2 \cdot 4$
2 = $|\cdot|24 - 3 \cdot |4 + 2 \cdot |0 \\ = 1 \cdot 24 - 3 \cdot |4 + 2 \cdot |0 \\ = 1 \cdot 24 - 3 \cdot |4 + 2 \cdot |0 \\ = 1 \cdot 24 - 3 \cdot |4 + 15 \cdot |24 - 2 \cdot |1 \cdot |4 - |4 \cdot |24 \\ = -3 \cdot |10 + 15 \cdot |24 - 2 \cdot |1 \cdot |10 - 4 \cdot |24 \\ = -3 \cdot |10 + 15 \cdot |24 - 2 \cdot |1 \cdot |10 - 4 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |10 + 23 \cdot |24 \\ = -5 \cdot |24 + |23 + |23 + |23 + |24 \\ = -5 \cdot |24 + |24 \\ = 23 + 1 \cdot |24 \\ = 23 + 55 t \end{aligned}$

3)
(a)
$$gcd(12,8) = 4$$

4 $f/14$
There are no integer solutions to
 $12x + 8y = 14$

(b)
Since
$$a|(b-c)$$
 we have $b-c = ak$ where $k \in \mathbb{Z}$.
Since $a|d$ we have $d = al$ where $l \in \mathbb{Z}$.
Thus,
 $2bd-2cd = 2d(b-c)$
 $= 2(al)(ak)$
 $= a^{2}(2k)$
Since $2lk \in \mathbb{Z}$ this implies that
 $a^{2}|(2bd-2cd)$.

(4) A HW 2 #9
B HW 1 #7(a)

5 C
Since
$$e = gcd(a,b)$$
 we know that
 $e|a and e|b$.
Thus, $a = e|b and e = b|c where $b, l \in \mathbb{Z}$.
Thus, $a = e|b| and a - b = e(|b|-1|)$
So, $a+b = e(|b+1|)$ and $a-b = e(|b-1|)$
So, $e|(a+b)$ and $e|(a-b)$.
So, $e|(a+b)$ and $e|(a-b)$.
So, $e is a common divisor of $a+b$ and
 $a-b$.
But $d = gcd(a+b, a-b)$.
Thut is, d is the greatest common divisor
Thus, $e \leq d$$$

Since
$$d = gcd(m,n)$$
 we know $d|m$ and $d|n$.
Thus, $m = dk$ and $n = dl$ where $k, l \in \mathbb{Z}$.
Since $m \int (a-b)$ and $n \int (a-c)$ we know
that $a-b = ms$ and $a-c = nt$
where $s, t \in \mathbb{Z}$.

Thus, b-c = (a - ms) - (a - nt) = -ms + nt = -dks + dlt = d[-ks + lt]. So, d[(b-c).

(5) (7)