(1)

$$
\begin{aligned}
& 514=4 \cdot 120+34 \\
& 120=3 \cdot 34+18 \\
& 34=1 \cdot 18+16 \\
& 18=1 \cdot 16+2<\operatorname{gcd}(514,120)=2 \\
& 16=8 \cdot 2+0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 14=1.110-4.24 \\
& 10=1.24-1.14 \\
& 4=1.14-1.10 \\
& 2=1.10-2.4
\end{aligned}
$$

$$
\begin{aligned}
& 2=1 \cdot(10)-2 \cdot(4) \\
& =1 \cdot[1 \cdot(24)-1 \cdot(14)]-2 \cdot[1.14)-1.10]] \\
& =1 \cdot \sqrt{24}-3 \cdot[14]+2 \cdot(10 \\
& =1 \cdot(24)-3 \cdot[1 \cdot(110-4 \cdot(24]+2 \cdot[1 \cdot \sqrt{24}-1 \cdot(14)] \\
& =-3 \cdot(110)+15 \cdot 24-2 \cdot 14 \\
& =-3 \cdot(110+15 \cdot(24)-2 \cdot[1 \cdot(110-4 \cdot(24)] \\
& =-5 \cdot 110+23 \cdot 24
\end{aligned}
$$

So, $110(-5)+24(23)=2$
particular solution: $x=-5, y=23$
all solutions

$$
\begin{aligned}
& \text { U solutions } \\
& x=-5-t\left(\frac{24}{2}\right)=-5-12 t, \\
& y=23+t\left(\frac{10}{2}\right)=23+55 t
\end{aligned}
$$

(3)
(a) $\operatorname{gcd}(12,8)=4$

$$
4 \times 14
$$

There are no integer solutions to

$$
12 x+8 y=14
$$

(b)

Since $a)(b-c)$ we have $b-c=a k$ where $k \in \mathbb{Z}$. Since ald we have $d=a l$ where $l \in \mathbb{Z}$.

Thus,

$$
\begin{aligned}
2 b d-2 c d & =2 d(b-c) \\
& =2(a l)(a k) \\
& =a^{2}(2 l k)
\end{aligned}
$$

Since $2 k k \in \mathbb{Z}$ this implies that

$$
\begin{aligned}
& \text { Since } 2 l k \in \\
& a^{2} \mid(2 b d-2 c d)
\end{aligned}
$$

(4)
(A) $H \omega 2 \# 9$
(B) HW1 \#7(a)
(5) c)

Since $e=\operatorname{gcd}(a, b)$ we know that el and ell.
Thus, $a=c k$ and $e=b l$ where $k, l \in \mathbb{Z}$.
So, $a+b=e(k+l)$ and $a-b=e(k-l)$
So, $e \backslash(a+b)$ and $e \mid(a-b)$.
So, e is a common divisor of $a+b$ and $a-b$.

But $d=\operatorname{gcd}(a+b, a-b)$.
That is, d is the greatest common divisor of $a+b$ and $a-b$.

Thus, $e \leq d$
(5) (D)

Since $d=\operatorname{gcd}(m, n)$ we know d / m and $d \mid n$. Thus, $m=d k$ and $n=d l$ where $k, l \in \mathbb{Z}$. Since $m /(a-b)$ and $n /(a-c)$ we know that $a-b=m s$ and $a-c=n t$ where $s, t \in \mathbb{Z}$.

Thus,

$$
\begin{aligned}
b-c & =(a-m s)-(a-n t) \\
& =-m s+n t \\
& =-d k s+d l t \\
& =d[-k s+l t]
\end{aligned}
$$

$$
\text { So, } d l(b-c)
$$

