Math 4460 $5 / 8 / 23$

Theorem: Let $p \in \mathbb{Z}$ be an odd prime with $p \equiv 1(\bmod 4)$. Then p is the sum of two squares.
proof:
By a theorem from last week since p is an odd prime with $p \equiv 1(\bmod 4)$ there exists $\bar{x} \in \mathbb{Z}_{p}^{x}$ where $\bar{x}^{2}=-1$ in \mathbb{Z}_{p}^{x}.
Then, $x^{2} \equiv-1(\bmod p)$.
So, $x^{2}-(-1)=p k$ where $k \in \mathbb{Z}$.

That is, $x^{2}+1=p k$.
Then, $(x-i)(x+i)=p k$
Thus, $p \mid(x-i)(x+i)$ in $\mathbb{Z}[i]$.
Claim: p is not prime in $\mathbb{Z}[i]$
Why?
If p was prime in $\mathbb{Z}[i]$, since $p \mid(x+i)(x-i)$ we would have $p \mid(x+i)$ or $p \mid(x-i)$
But

$$
\frac{x+i}{p}=\frac{x}{p}+\frac{1}{p} i \notin \mathbb{Z}[i]
$$

and

$$
\frac{x-i}{p}=\frac{x}{p}-\frac{1}{p} i \notin \mathbb{Z}[i]
$$

So $p X(x+i)$ and $p X(x-i)$.
Thus, p is not prime in $\mathbb{Z}[i]$
Claim
So, p has a divisor $z \in \mathbb{Z}(i)$ where z is not a unit and not an associate of p.
Ex: 2 is not prime

Thus, $p=z k$ where $k \in \mathbb{Z}[i]$
Then, $N(p)=N(z k)$

$$
\begin{aligned}
& p=p+i 0 \\
& N(p)=p^{2}
\end{aligned}
$$

So, $p^{2}=\underbrace{N(z)}_{\substack{\text { non-negative } \\ \text { integers }}} N$
So, $N(z)=1, p$, or p^{2}
$\operatorname{Can} N(z)=1$?
No, because z is not a unit!
Can $N(z)=p^{2}$?

If $N(z)=p^{2}$, then $N(k)=1$
Then k is a unit and $k^{-1} \in \mathbb{Z}[i]$ and k^{-1} is a unit.
multiply $p=z k$ by k^{-1} to get
But then Z would be an associate of p which it isn't.

Thus, therefore, ergo, we must have $N(z)=p$.
Suppose $z=x+i y$ where $x, y \in \mathbb{Z}$.
Then, $x^{2}+y^{2}=p$ and p is the sum of squares

Corollary: If $p \in \mathbb{Z}$ is an odd prime with $p \equiv 1(\bmod 4)$ then p is not prime in the Gaussian integers $\mathbb{Z}[i]$.
proof: We saw this in the above proof. E

$$
\begin{aligned}
& E x i p=5 \equiv 1(\bmod 4) \\
& 5=(1+2 i)(1-2 i)
\end{aligned}
$$

Theorem (HW 6 \#15)
Let $p \in \mathbb{Z}$ be an odd prime with $p \equiv 3(\bmod 4)$
then p is prime in the Gaussian integers $\mathbb{Z}[i]$

Ex:

$$
\begin{aligned}
& p=3 \\
& p=11 \\
& e+c
\end{aligned}
$$

 Theory

Review time
HF 5
(13) Prove that 19 is not a divisor of $4 n^{2}+4$ for any integer n.
proof: Suppose it is!
Then, $4 n^{2}+4=19 k$ where $k \in \mathbb{Z}$.
Then in \mathbb{Z}_{19} we have
multiples
of 19

$$
\overline{4} \bar{n}^{2}+\overline{4}=\overline{0}
$$

So, $\overline{4} \bar{n}^{2}=\overline{15}$.
Thus, $\overline{5} \cdot \overline{4} \bar{n}^{2}=\overline{5} \cdot \overline{15}$

Since $\overline{20}=T$ and $\overline{75}=\overline{18}$
in \mathbb{Z}_{19} we get that

$$
\bar{n}^{2}=\overline{18}
$$

But in \mathbb{Z}_{19} we have

$$
\begin{array}{ll}
0^{2}=\overline{0} & \overline{9}^{2}=\overline{81}=\overline{5} \\
T^{2}=\overline{1} & T_{0}^{2}=\overline{100}=\overline{5} \\
\overline{2}^{2}=\frac{1}{4} & \pi^{2}=(-8)^{2}=\overline{8}^{2}= \\
\overline{3}^{2}=\overline{9} & \overline{4}^{2}=(-\overline{7})^{2}=\overline{7}^{2}= \\
\overline{4}^{2}=\overline{16} & \overline{3}^{2}=\overline{17} \\
\overline{5}^{2}=\overline{25}=\overline{6} & \overline{14}^{2}=\overline{6} \\
\overline{6}^{2}=\overline{36}=\overline{17} & \overline{15}^{2}=16 \\
\overline{7}^{2}=\overline{49}=\overline{11} & \overline{16}^{2}=\overline{9} \\
\overline{8}^{2}=\overline{64} & \frac{17}{18}=\frac{4}{18}=\frac{1}{2}=1
\end{array}
$$

$\frac{7}{11}$| multitess
 offing19
 38
 57
 76
 95
 114
 133
 \vdots |
| :---: |

There is no $\bar{n} \in \mathbb{Z}_{19}$ with $\bar{n}^{2}=\sqrt{8}$. Contradiction.
Thus, $19 \times\left(4 n^{2}+4\right)$ when $n \in \mathbb{Z}$

HF 6
(19) Let $w, y, z \in \mathbb{Z}[i]$.

Prove: If w is a unit and $z \mid w y$, then $z \mid y$.
proof: Let w be a unit and $z \mid w y$.

Then, $w y=z k$ where $k \in \mathbb{Z}[\hat{i}]$. Since w is a unit, we know $w^{-1} \in \mathbb{Z}[i]$.
multiplying by w^{-1} we get

$$
\omega^{-1} \omega y=\omega^{-1} z k .
$$

Thus, $y=z\left(\omega^{-1} k\right) .4$
Since $w^{-1}, k \in \mathbb{Z}[i]$ we know $\omega^{-1} k \in \mathbb{Z}[i]$

Thus, z|y.

