

/

•

Gaussian integers continued...

Theorem: Let Z,V,W be Gaussian integers. If Z is prime in the Gaussian integers and Z/VW, then Z/V or Z/W. proof: online notes Application: Let p be an odd prime in Z. When does p=x+y2 where x,yEZZ ?

Ex:
$$5 = 2^{7} + 1^{2}$$

 $3 = x^{2} + y^{2}$ 4 (no integer
solutions)

Theorem: Let
$$p \equiv 3 \pmod{4}$$

be an odd prime. Then
 $p = x^2 + y^2$ has no integer
solutions x, y .

proof:
Suppose $p = x^2 + y^2$ for some $x, y \in \mathbb{Z}$
Then in \mathbb{Z}_{Y} we would have
 $\overline{p} = \overline{x}^2 + \overline{y}^2$.

Note that if $\overline{a} \in \mathbb{Z}_{Y}$

then
$$\overline{a}^2 = \overline{0}$$
 or $\overline{a}^2 = \overline{1}$
by the following table
This implies that
 $\overline{x}^2 + \overline{y}^2 = \overline{0}$
 $\sqrt[3]{x^2 + \overline{y}^2} = \overline{1}$
 $\sqrt[3]{x^2 + \overline{y}^2} = \overline{1}$
 $\sqrt[3]{x^2 + \overline{y}^2} = \overline{2}$
But $p \equiv 3 \pmod{4}$, so $\overline{p} = \overline{3}$ in Zy
So, $\overline{p} = \overline{x}^2 + \overline{y}^2$ is impossible.

Theorem: Let
$$p \in \mathbb{Z}$$
 be an
odd prime with $p \equiv l \pmod{4}$.
Then $p = x^2 + y^2$ has integer
solutions.

$$\frac{p(oof:}{From Topic 5, since p \equiv 1 (m \circ d 4)}$$

From Topic 5, since p \equiv 1 (m \circ d 4)
there exists $\overline{X} \in \mathbb{Z}_{p}^{x}$ where
 $\overline{x}^{2} \equiv -1$ in \mathbb{Z}_{p}^{x} .
So, $\overline{x}^{2} \equiv -1 (m \circ d p)$.
So, $\overline{x}^{2} \equiv -1 (m \circ d p)$.
Thus, $\overline{x}^{2} \pm 1 \equiv pk$ where $k \in \mathbb{Z}$.
Then, $(x \pm i)(x \pm i) \equiv pk$ in $\mathbb{Z}[i]$.

Thus, $p \mid (x+i)(x-i)$ in $\mathbb{Z}[i]$. Claim: p is not prime in Z[i]. Pf of claim: If p was prime in Z[i] then either P(X+i) or P(X-i) in Z(i). But then either $\frac{X+\lambda}{P}$ or $\frac{X-\lambda}{P}$ is in $\mathbb{Z}[\lambda]$ So either $\frac{x}{p} + \frac{1}{p}$, or $\frac{x}{p} - \frac{1}{p}$, is in $\mathbb{Z}[i]$. But p & Z, so the above is not true. - claim] -

Since p is not prime in Z(i)
We know that p has a divisor

$$z \in \mathbb{Z}[i]$$
 where z is not
a unit and not an associate of p.
 $\overline{Z \neq 1, -1, -i, i}, p, -p, -ip, ip$
unit associates upp
Then $p = \mathbb{Z}k$ where $k \in \mathbb{Z}[i]$.
Thus, $N(p) = N(\mathbb{Z}k)$.
 $p = p + 0i$
 $N(p) = p^2 + 0^2 = p^2$
Su, $p^2 = N(\mathbb{Z})N(\mathbb{R})$, $f(p) = \frac{p^2}{2}$

These are non-negative
integers in Z
Since p is prime in Z the
above gives three possibilities:
(i)
$$N(z)=1$$
, $N(k)=p^2$
(ii) $N(z)=p$, $N(k)=p$
(iii) $N(z)=p^2$, $N(k)=1$
But (i) can't hold because
Z is not a unit so $N(z)\neq 1$.
If (iii) was true then $N(k)=1$
gives k is a unit and then
 $p=zk$ would give $z=k^2p$
which gives Z is an associate
of p which isn't true.

Thus, (iii) is true,
So,
$$N(z) = P$$
,
Suppose $z = x + iy$.
Then $x^2 + y^2 = P$.
 $N(z)$



