Math 4460 5/3/23

Ex: Find all the divisors of 2 in $\mathbb{Z}[i]$

Suppose $z \in \mathbb{Z}[i]$ and $z \mid 2$.
Then $Z=z w$ where $w \in \mathbb{Z}[i]$.
So, $N(2)=N(z w)$
$N(a+b i)$
Thus, $4=\underbrace{N(z)}_{\text {noon }}$ $=a^{2}+b^{2}$

So, $N(z)=1,2$, or 4 .
Case 1: Suppose $N(z)=1$

$$
2=(1)(2)
$$

Then, $z=1,-1, i$, or $-i\}$ $2=(-1)(-2)$ $z=(i)(-2 i)$
These all divide 2 .
case 2: Suppose $N(Z)=4$
Let $z=a+b i$.
$a= \pm 2, b=0$
$a=0, b= \pm 2$

Then $a^{2}+b^{2}=4$.
So $z=2,-2,2 i$, or $-2 i$,
These are the associates of 2 and so divide 2 .
case 3: Suppose $N(z)=2$
Let $z=a+b i$,
Then $a^{2}+b^{2}=2$.
Then $z=1+i, 1-i,-1+i$, or $-1-i$.
This gives possible divisors of 2 , but need to check if they are.
Let's see.

$$
\begin{aligned}
& \text { Let's see. } \\
& \begin{aligned}
& \frac{2}{1+i}=\frac{2}{1+i} \cdot \frac{1-i}{1-i}=\frac{2-2 i}{1-i+i-i^{2}}=\frac{2-2 i}{2} \\
&=1-i
\end{aligned}
\end{aligned}
$$

So, $2=(1+i)(1-i)$

Similarly, $\frac{2}{-1+i}=-1-i$ and

$$
z=(-1+i)(-1-i)
$$

The divisors of 2 are

$$
\underbrace{1,-1, i,-i}_{\text {units }}, \underbrace{\text { The divisors of } 2,-2,2 i,-2 i}_{\text {associates }}, \underbrace{1+i, 1-i,-1+i,-1-i}_{\text {extra ones }}
$$

So 2 is not prime in $\mathbb{Z}\left[\begin{array}{l}- \\ i\end{array}\right]$

Theorem: Let $z \in \mathbb{Z}[i]$.
If $N(Z)$ is prime in \mathbb{Z},
then z is prime in $\mathbb{Z}[i]$.
proof: HW 6 \# 18
$E x: N(1+i)=1^{2}+1^{2}=2$
Since 2 is prime in \mathbb{Z} by the theorem $1+i$ is prime in $\mathbb{Z}[i]$.

The converse
"If z is prime in $\mathbb{Z}[i]$, then $N(z)$ is prime in $\mathbb{Z}^{\prime \prime}$ is not always true.
For example, let $z=3$ is prime in $\mathbb{Z}[i]$ (we saw that on Monday), but $N(3)=3^{2}=9$ which is not prime in \mathbb{Z}.

Theorem: Let $z, v, w \in \mathbb{Z}[i]$ Suppose z is prime in $\mathbb{Z}[i]$.
If $z \mid v w$, then $z \mid v$ or $z \mid w$.
proof: Look at online notes.

Application of $\mathbb{Z}[i]$
Let p be an odd prime in \mathbb{Z}. What are conditions on p so that $p=x^{2}+y^{2}$ $\begin{array}{cc}\text { So that } P=x+i n \\ \text { has integer solutions } x, y & \mathbb{P}_{0}\end{array}$

Ex: $5=1^{2}+2^{2}$
$3=x^{2}+y^{2}$ has no integer solutions

We need a theorem to help us.

Theorem: Let p be an odd prime in \mathbb{Z} where $p \equiv 1(\bmod 4)$. Then there exists $\bar{x} \in \mathbb{Z}_{p}^{x}$ Where $\bar{x}^{2}=-1 . \&\left[x^{2} \equiv-1(\bmod p)\right]$

Ex: $p=13 \equiv 1(\bmod 4)$

$$
\begin{aligned}
& \mathbb{Z}_{13}^{x}=\underbrace{\{T, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \bar{\pi}, \overline{1}\}}_{\text {first half }} \\
& \text { Let } \bar{x}=T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \text { half } \quad\left[\begin{array}{r}
6=\frac{13-1}{2} \\
=\frac{p-1}{2}
\end{array}\right. \\
& \text { Then }
\end{aligned}
$$

$$
\begin{aligned}
\bar{x}^{2} & =T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \cdot T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \\
& =T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \cdot \underbrace{-1 \cdot \overline{-} \cdot \cdot \overline{-}}_{\text {even \# of terms }} \\
& =T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \cdot \overline{12} \cdot \pi \cdot \overline{10} \cdot \overline{9} \cdot \overline{8} \cdot \overline{7} \\
& =T \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot \overline{5} \cdot \overline{6} \cdot \overline{7} \cdot \overline{8} \cdot \overline{9} \cdot \overline{10} \cdot \pi \cdot \overline{12} \\
& =\overline{12!}=\overline{4} \text { by Wilson's thm }
\end{aligned}
$$

If there exists $x, y \in \mathbb{Z}$ where $p=x^{2}+y^{2}$ then we say that p is the sum of two squares.

Ex: $5=1^{2}+2^{2}$ is the sum of two squares

3 is not the sum of two squares.

Q: What odd primes are the sum of two squares?

If p is an odd prime then either $p \equiv 1(\bmod 4)$ or $p \equiv 3(\bmod 4)$.

Theorem: Let p be an odd prime in \mathbb{Z} with $p \equiv 3(\bmod 4)$. Then p is not the sum of two squares.
proof: Note that if $\bar{a} \in \mathbb{Z}_{4}$, then by Table 1 we have $\bar{a}^{2}=\overline{0}$ or $\bar{a}^{2}=\bar{I}$.

$\|$Table $1 \mid$ \bar{a} \bar{a}^{2} $\overline{0}$ $\overline{0}$ T \bar{T} $\overline{2}$ $\overline{4}=\overline{\overline{0}})$ $\overline{3}$ $\overline{9}=\bar{T}$
In $\left.\mathbb{Z}_{4}\right)$

Table 2
By Table 2, if

$$
\bar{x}, \bar{y} \in \mathbb{Z}_{y}
$$

then

$$
\bar{x}^{2}+\bar{y}^{2} \neq \overline{3}
$$

Table 2
\bar{x}^{2} \bar{y}^{2} $\bar{x}^{2}+\bar{y}^{2}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ \bar{T} T $\overline{0}$ T T T \bar{z}

Let p be an odd prime with $p \equiv 3(\bmod 4)$. If $p=x^{2}+y^{2}$ with $x, y \in \mathbb{C}$, then $\overline{3}=\bar{p}=\bar{x}^{2}+\bar{y}^{2}$ in $\mathbb{Z} y$ which isn't possible. So, p is not the Sum of two squares.

