Math 4460 5/10/23

WW 5
(5) $\mathbb{Z}_{14}^{x}=\{T, \overline{3}, \overline{5}, \overline{9}, \pi, \overline{13}\}$

$$
\begin{aligned}
& 3^{1}=\sqrt{3} \\
& 3^{2}=\overline{9} \\
& 3^{3}=\overline{27}=(13 \\
& 3^{4}=\overline{39}=\overline{11} \\
& \overline{3}^{5}=\overline{33}=5 \\
& \overline{3}^{6}=\overline{15}=(1)
\end{aligned}
$$

\vdots ! (now repents)

$$
\overline{3} \cdot \overline{5}=\overline{15}=T
$$

Se, $\overline{5}=\overline{3}^{-1}$
Since $\overline{3}$ is a primitive root, so is $\overline{5}$.

Since the powers
of $\overline{3}$ give us all
of \mathbb{Z}_{14}^{x} we know
$\overline{3}$ is a primitive root.
The: If $\bar{a} \in \mathbb{Z}_{n}^{x}$ is a primitive root, then \bar{a}^{-1} is also a primitive root
$\overline{9}$ isn't a primitive root.

$$
\begin{aligned}
& \bar{q}^{\prime}=\overline{9}=\overline{3}^{2} \\
& \overline{9}^{2}=\left(\overline{3}^{2}\right)^{2}=\overline{3}^{4}=\overline{11} \\
& \overline{9}^{3}=\left(\overline{3}^{2}\right)^{3}=\overline{3}^{6}=\overline{1}
\end{aligned}
$$

and $\overline{9}$ is not a
primitive root, II won't be a primitive root too.

$$
\begin{aligned}
& \overline{13}=\overline{3}^{3} \\
& \overline{13}^{2}=\left(\overline{3}^{3}\right)^{2}=\overline{3}^{6}=\overline{1} \quad \begin{array}{l}
\overline{3} \text { is } \\
\text { not a } \\
\vdots(\text { repeats } \quad
\end{array} \begin{array}{l}
\text { primine } \\
\text { root }
\end{array}
\end{aligned}
$$

Ho 5
(8) (9) modified

Reduce $\overline{3}^{-1562}$ in \mathbb{Z}_{28}^{x}
Need $\varphi(28)$

$$
\begin{aligned}
n & =p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \\
\varphi(n) & =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) \\
\varphi(28) & =\varphi\left(2^{2} \cdot 7^{1}\right) \\
& =2^{2} \cdot 7\left(1-\frac{1}{2}\right)\left(1-\frac{1}{7}\right)
\end{aligned}
$$

$$
=2^{x} \cdot 7\left(\frac{1}{2}\right)\left(\frac{6}{7}\right)=12
$$

Thus, $\left|\mathbb{Z}_{28}^{x}\right|=\varphi(28)=12$
Ever: $\bar{a} \in \mathbb{Z}_{n}^{x} \rightarrow \bar{a}^{\varphi(n)}=\bar{T}$

So, Euler says:
Since $\overline{3} \in \mathbb{Z}_{28}^{x}$ we know

So,

$$
\overline{3}^{1562}=\overline{3}^{12(130)+2}
$$

$\frac{\varphi(28)=12}{130}$| $12 \sqrt{1562}$ |
| ---: |
| $\frac{-12}{36}$ |
| $\frac{-36}{02}$ |

$$
\begin{aligned}
& =\left(\overline{3}^{12}\right)^{130} \cdot \overline{3}^{2} \\
& =-13 \cdot 3^{2}=\overline{9}
\end{aligned}
$$

$H W 6$
(16) Let $z, w \in \mathbb{Z}[i]$. Prove: $w \mid z$ iff $\bar{w} \mid \bar{z}$.
proof:
(c) Suppose w / z.
Then, $z=w k$ where $k \in \mathbb{Z}[i]$.
So, $\bar{z}=\overline{w k}$.
Thus, $\bar{z}=\bar{w} \cdot \bar{k}$
Since $\bar{k} \in \mathbb{Z}[\bar{i}]$ and $\bar{z}=\bar{w} \cdot \bar{k}$ we know $\bar{w} \mid \bar{z}$.
$(ふ)$ Suppose $\bar{w} \mid \bar{z}$.
Then by (\leadsto) we know $\overline{\bar{w}} \mid \overline{\bar{z}}$
Thus, wiz.
$1+\omega 6$
(8) Is $2+i$ prime in $\mathbb{Z}[i]$?

What are all its divisors?

$$
N(2+i)=2^{2}+1^{2}=5
$$

Theorem: If $N(z)=p$ where p is prime in \mathbb{Z}, then
z is prime in $\mathbb{Z}[i]$
Using the theorem, $2+i$ is prime. The divisors of $2+i$ are:
units: $1,-1, i,-i$
associates:

$$
\begin{aligned}
1 \cdot(2+i) & =2+i \\
-1 \cdot(2+i) & =-2-i \\
i \cdot(2+i) & =2 i+i^{2}=-1+2 i \\
-i \cdot(2+i) & =-(-1+2 i) \\
& =1-2 i
\end{aligned}
$$

(17) $(c) z \in \mathbb{Z}[i]$

Prove: Z is prime iff \bar{z} is prime.

We will prove:
z is not prime iff \bar{z} is not prime.
proof:
$(t>)$
Suppose z is not prime.
Then z has a divisor $w \in \mathbb{Z}[i]$ where w is not a unit and w is not an associate of z.

$$
\left[\begin{array}{l}
w \neq 1,-1, i,-i \\
w \neq u z \text { where } u=1,-1, i,-i
\end{array}\right]
$$

Since w / z we have
$z=w k$ where $k \in \mathbb{Z}[i]$.
Then, $\bar{z}=\overline{w k}=\bar{w} \cdot \bar{k}$.
So, $\bar{w} \mid \bar{z}$.
Note \bar{w} is not a unit because w is not a unit.
$\left[\begin{array}{r}\text { using } 17(b) \text { : } u \text { is a unit } \\ \\ \text { inf } \bar{u} \text { is a unit }\end{array}\right]$
Is \bar{w} an associate of $\bar{z} ?_{0}^{?}$
Suppose it is!
Then, $\bar{w}=u \cdot \bar{z}$ where u is a nit.

This implies $\overline{\bar{w}}=\overline{u \bar{z}}$.
So, $w=\overline{\bar{u}} \cdot \overline{\bar{z}}$
Then, $w=\bar{u} \cdot z$
Since u is a vnit, we know \bar{u} is also a unit.
But then since $w=\bar{u} z$ we would get that w is an associate of z.
Contradiction.
Summary: $\bar{w} \mid \bar{z}$ and $\bar{\omega}$ is not a unit and \bar{w} is not an associate of \bar{z}. Thus, \bar{z} is not prime.
(b) Suppose \bar{z} is not prime.

Then by (\square), we know $\overline{\bar{z}}$ is not prime.
So, z is not prime.

$$
\begin{aligned}
F \mid N A L- & \text { MONDAY } \\
& 2: 30-4: 30
\end{aligned}
$$

