Math 4460

$$
5 / 1 / 23
$$

Recall:
Gaussian integers

$$
\left.\left.\frac{\text { Gaussian integers }}{\mathbb{Z}[i]=\{a+b i} \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

norm:

$$
\begin{aligned}
& \text { norm: } \\
& \left.N(a+b i)=a^{2}+b^{2}\right\} \begin{array}{l}
N(1-2 i) \\
=1^{2}+(-2)^{2} \\
=5
\end{array}
\end{aligned}
$$

If $z, w \in \mathbb{Z}[i]$, then

$$
N(z w)=N(z) N(w)
$$

In \mathbb{Z}, we say that $u \in \mathbb{Z}$ is a unit if $\frac{1}{u} \in \mathbb{Z}$.
The units of \mathbb{Z} are $1,-1$.
Def Let $u \in \mathbb{Z}[i]$
We say that u is a unit if $\frac{1}{u} \in \mathbb{Z}[i]$.

Ex:

$$
\begin{aligned}
& \frac{E x_{i}}{\frac{1}{1}}=1 \in \mathbb{Z}[i] \text { so } 1 \text { is a unit. } \\
& \frac{1}{-1}=-1 \in \mathbb{Z}[i] \text { so }-1 \text { is a unit. } \\
& \frac{1}{i}=\left(\frac{1}{i}\right)\left(\frac{-i}{-i}\right)=\frac{-i}{-i^{2}}=\frac{-i}{-(-1)}=-i \in \mathbb{Z}[i]
\end{aligned}
$$

So i is a unit.
$\frac{1}{-i}=i \in \mathbb{Z}[\overline{ } \quad$ so $-i$ is a unit.
So, $1,-1, i,-i$ are units.

Theorem: Let $z \in \mathbb{Z}[i]$
Then, z is a unit if and only if $N(z)=1$.
The only units are $1,-1, i,-i$. proof:
(\mapsto) Suppose z is a unit. Then, $w=\frac{1}{z}$ is in $\mathbb{Z}[i]$.

So, $z w=1$
Hence, $N(z w)=\underbrace{N(1)}_{1=1+0 i}$
So, $N(z) N(w)=1^{2}+0^{2}$
Ergo, $\underbrace{N(z)} \underbrace{N(w)}=1$.
these ane regular non-negative integers.
We must have $N(z)=1$ and $N(w)=1$.
So, $N(z)=1$.
$(<)$ Suppose $N(z)=1$.

Let $z=a+b i$ where $a, b \in \mathbb{Z}$. Then, $a^{2}+b^{2}=1$.

The possibilities are

$$
(a, b)=(1,0),(-1,0),(0,1),(0,-1)
$$

These correspond to

$$
z=1,-1, i,-i
$$

We saw earlier these are units. So, z is a unit.

Def: Let $z, w \in \mathbb{Z}[i]$, $z \neq 0$. We say that z divides w if there exists $k \in \mathbb{Z}[i]$ where $w=z k$.
If z divides w, then we write $z \mid \omega$ and we call z a divisor of w.
If z does not divide w then we write $z X w$.

$$
\begin{array}{r}
\text { Ex: } 3 \mid 6 \text { since } \underbrace{6}_{w}=\underbrace{3}_{z} \cdot \underbrace{2}_{k} \\
w, z, k \in \mathbb{Z}[i]
\end{array}
$$

Ex:

$$
2=(1+i)(1-i)
$$

So, $(1+i) \mid 2$ and $(1-i) \mid 2$.
Ex: Does $1+i$ divide 3 ?
Let's see:

$$
\begin{aligned}
& \begin{aligned}
\frac{3}{1+i} & =\frac{3}{1+i} \cdot \frac{1-i}{1-i} \\
& =\frac{3-3 i}{1-i+i-i^{2}}=\frac{3-3 i}{2} \\
& =\frac{3}{2}-\frac{3}{2} i \notin \mathbb{Z}[i]
\end{aligned}
\end{aligned}
$$

So, $1 t i$ does not divide 3 .

Ex: Find all the divisors of 3 .

We have

$$
\begin{align*}
& 3=(1)(3) \\
& 3=(-1)(-3) \\
& 3=(i)(-3 i) \tag{i}\\
& 3=(-i)(3 i)
\end{align*}
$$

So,

$$
\begin{aligned}
& 1,-1, i,-i \\
& 3,-3,3 i,-3 i
\end{aligned}
$$

are divisors of 3. Are there more?

Suppose $z \mid 3$ where $z \in \mathbb{Z}[i]$.
Then, $3=z k$ where $k \in \mathbb{Z}[\bar{i}]$.
So, $N(3)=N(z k)$.
Thus, $q=\underbrace{N(z)} N(k)$

$$
\begin{gathered}
3=3+0 i \\
N(3)=3^{2}+0^{2}=9
\end{gathered}
$$

non-negative
integers that divide 9.

So, $N(z)=1,3$, or 9 .
case 1: Suppose $N(z)=1$.
Then, by the previous theorem

$$
z=1,-1, i \text {, or }-i
$$

We saw these all divide 3 .
case 2: suppose $N(z)=3$
Let $z=a+b i$, where $a, b \in \mathbb{Z}$.
Then, $a^{2}+b^{2}=3$.
$\left.\begin{array}{|c|c|c}\hline a & a^{2}+b^{2} \\ \hline 0 & \pm 1 & 1 \\ \hline \pm 1 & 0 & 1 \\ \hline \pm 1 & \pm 1 & 2 \\ \hline \pm 0 & 2 & 4>3 \\ \hline \vdots & \vdots & \end{array}\right\}$

By the table there are no z with $N(z)=3$.

$$
\left\{\begin{array}{l}
\text { all have } \\
a^{2}+b^{2}>3
\end{array}\right.
$$

case 3: Suppose $N(z)=9$.
Let $z=a+b i, a, b \in \mathbb{Z}$.
Then $a^{2}+b^{2}=9$.
The solutions are

$$
\begin{aligned}
(a, b)= & (3,0),(-3,0), \\
& (0,3),(0,-3)
\end{aligned}
$$

These correspond to

$$
z=3,-3,3 i,-3 i
$$

These are the four we found earlier.

Therefore, the only divisor of 3 are $1,-1, i,-i, 3,-3,3 i,-3 i$.

Def: Let $z \in \mathbb{Z}[i], z \neq 0$ The elements

$$
z,-z, i z,-i z
$$

are called the associates of z.

Note:
If $z \in \mathbb{Z}[i], z \neq 0$, then

$$
\left.\begin{array}{l}
z=(1)(z) \\
z=(-1)(-z) \\
z=(i)(-i z) \\
z=(-i)(i z)
\end{array}\right\} \begin{aligned}
& \text { so } z \text { is } \\
& \text { divisible by } \\
& \text { the units } \\
& \text { 1,-1, }, \text {,-i } \\
& \text { and the } \\
& \text { associates of } z \\
& z,-z, i z,-i z
\end{aligned}
$$

Def: Let $z \in \mathbb{Z}[i]$.
We say that z is prime in $\mathbb{Z}[i]$ if
(1) z is not a unit σ 1,-1 $i,-i$
and (2) the only divisors of z are

$$
\underbrace{1,-1, i,-i}_{\text {units }}, \underbrace{z z,-z, i z,-i z}_{\text {associates of } z}
$$

Ex: We saw earlier that 3 is prime in $\mathbb{Z}[i]$.

