Math 4460

$$
4 / 5 / 23
$$

Theorem (from monday) Let $a, n \in \mathbb{Z}$ with $n \geq 2$.
Then, \bar{a} has a multiplicative inverse in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$.
moreover, if \bar{a} has a multiplicative inverse in \mathbb{Z}_{n}, then that inverse is unique.
proof:
$((<\sqrt{\square})$ Suppose that $\operatorname{gcd}(a, n)=1$.
Then there exist integers x_{0} and y_{0} where $a x_{0}+n y_{0}=1$.
Thus in \mathbb{Z}_{n} we have $\overline{a x_{0}+n y_{0}}=T$.
Hence in \mathbb{Z}_{n} we have ${\overline{a x_{0}}}+\overline{n y_{0}}=T$.
So in \mathbb{Z}_{n} we have $\bar{a} \bar{x}_{0}+\bar{n}_{0}=\bar{T}$.
We know $\bar{n}=\overline{0}$ in \mathbb{Z}_{n}, thus we have $\bar{a} \bar{x}_{0}=T$.
So, \bar{x}_{0} is a multiplicative inverse for \bar{a} in \mathbb{Z}_{n}.
$((\leadsto))$ Suppose \bar{a} has a multiplicative inverse in \mathbb{Z}_{n}.

Then there exists $b \in \mathbb{Z}$ where $\bar{a} \cdot \bar{b}=\overline{1}$ in \mathbb{Z}_{n}.
Let $d=\operatorname{gcd}(a, n) \leftarrow$
Our goal is to show that $d=1$.
Suppose instead that $d>1$.
Let's show that this leads to a contradiction.
Let $c=\frac{n}{d} \cdot \triangleleft \quad \begin{gathered}c \in \mathbb{Z} \text { because } \\ d \ln \end{gathered}$
Since $d>1$ we know $c=\frac{n}{d}<n$.
Since n, d are both positive and d / n we know $d \leq n$.
So, $1 \leq \frac{n}{d}=c$.
Thus, $\quad 1 \leqslant c<n$

Hence, ergo, thus $\bar{c} \neq \overline{0}$ in \mathbb{Z}_{n}.
But on the other hand

So, $\bar{c}=\overline{0}$.
Thus, $\bar{c} \neq \overline{0}$ and $\bar{c}=\overline{0}$.
Contradiction.
So, $d=1$.
$($ (moreover part $))$
Suppose \bar{a} has a multiplicative inverse. Let's show the inverse is unique.
Suppose \bar{g}_{1} and \bar{g}_{2} are both multiplicative inverses for \bar{a}.
Then, $\bar{a} \cdot \bar{g}_{1}=T$ and $\bar{a} \cdot \bar{g}_{2}=T$.
Let's show $\bar{g}_{1}=\bar{g}_{2}$
We have

$$
\begin{aligned}
\bar{g}_{1} & =\bar{g}_{1} \cdot \underbrace{\overline{1}}=\bar{g}_{1} \cdot \underbrace{\left(\bar{a} \cdot \bar{g}_{2}\right)} \\
& =\left(\bar{g}_{1} \cdot \bar{a}\right) \cdot \bar{g}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\bar{a} \cdot \bar{g}_{1}\right) \cdot \bar{g}_{2} \\
& =T \cdot g_{2} \\
& =\bar{g}_{2}
\end{aligned}
$$

Notation: If $\bar{a} \in \mathbb{Z}_{n}$ has a multiplicative inverse then we denote it's unique inverse by \bar{a}^{-1}.

Def: Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Define

$$
\begin{aligned}
& \mathbb{Z}_{n}^{x}=\left\{\begin{array}{l|l}
\bar{a} \in \mathbb{Z}_{n} & \begin{array}{l}
\bar{a} \text { has a } \\
\text { multiplicative inverse }
\end{array}
\end{array}\right\} \\
& =\left\{\bar{a} \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|r|}
\hline \text { MATH } \\
4550
\end{array} \mathbb{Z}_{n} \text { is a grove } \\
& \text { under }+ \\
& \mathbb{Z}_{n}^{x} \text { is a grove } \\
& \text { under. }
\end{aligned}
$$

Ex: Let's calculate \mathbb{Z}_{10}^{x}.

$$
\begin{aligned}
& \text { We have } \\
& \mathbb{Z}_{10}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\} \\
& \operatorname{gcd}(0,10)=10 \neq 1 \\
& \operatorname{gcd}(5,10)=5 \neq 1 \\
& \operatorname{gcd}(1,10)=1 \\
& \operatorname{gcd}(2,10)=2 \neq 1 \\
& \operatorname{gcd}(6,10)=2 \neq 1 \\
& \operatorname{gcd}(3,10)=1 \\
& \operatorname{gcd}(4,10)=2 \neq 1 \\
& \operatorname{gcd}(7,10)=1 \\
& \operatorname{gcd}(8,10)=2 \neq 1 \\
& \operatorname{gcd}(9,10)=1 \\
& \text { So, } \mathbb{Z}_{10}^{x}=\{T, \overline{3}, \overline{7}, \overline{9}\} \\
& \begin{array}{l}
T \cdot T=T \\
\overline{3} \cdot \overline{7}=\overline{21}=T \\
\overline{9} \cdot \overline{9}=\overline{81}=T
\end{array} \rightarrow\left[\begin{array}{l}
\text { So, } \bar{T}^{-1}=\frac{T}{} \\
\overline{3}^{-1}=\frac{7}{7} \\
\overline{7}^{-1}=\overline{3} \\
\overline{9}^{-1}=\overline{9}
\end{array}\right.
\end{aligned}
$$

Exit Let's calculate \mathbb{Z}_{15}^{x} and every elements multiplicative inverse

$$
\begin{array}{ll}
\mathbb{Z}_{15}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{2}, \overline{3}, \overline{14}\} \\
\operatorname{gcd}(0,15)=15 \neq 1 & \operatorname{gcd}(8,15)=1 \\
\operatorname{gcd}(1,15)=1 & \operatorname{gcd}(9,15)=3 \neq 1 \\
\operatorname{gcd}(2,15)=1 & \operatorname{gcd}(10,15)=5 \neq 1 \\
\operatorname{gcd}(11,15)=1 \\
\operatorname{gcd}(4,15)=3 \neq 1 & \operatorname{gcd}(12,15)=3 \neq 1 \\
\operatorname{gcd}(5,15)=5 \neq 1 & \operatorname{gcd}(13,15)=1 \\
\operatorname{gcd}(6,15)=3 \neq 1 & \operatorname{gcd}(14,15)=1
\end{array}
$$

Thus,

$$
\mathbb{Z}_{15}^{x}=\{T, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \pi, \overline{13}, \overline{14}\}
$$

$$
\begin{aligned}
& T \cdot T=T \\
& \overline{2} \cdot \overline{8}=\overline{16}=T \\
& \overline{4} \cdot \overline{4}=\overline{16}=T \\
& \overline{7} \cdot \overline{13}=\overline{91}=T \\
& T \cdot T=\overline{121}=T \& \\
& \overline{14} \cdot \overline{14}=\overline{196}=T
\end{aligned}
$$

Thus,

$$
\begin{array}{ll}
T^{-1}=T & \overline{8}^{-1}=\overline{2} \\
\overline{2}^{-1}=\overline{8} & \pi^{-1}=\overline{11} \\
\overline{4}^{-1}=\overline{4} & \overline{13}^{-1}=\overline{7} \\
\overline{7}^{-1}=\sqrt{3} & \overline{14}^{-1}=\overline{14}
\end{array}
$$

Ex: If p is a prime, then

$$
\mathbb{Z}_{p}=\{\overline{0}, T, \overline{2}, \ldots, \overline{p-1}\}
$$

$$
\begin{aligned}
& \text { and } \\
& \mathbb{Z}_{p}^{x}=\{T, \overline{2}, \ldots, \overline{p-1}\}
\end{aligned}
$$

and
because $\operatorname{gcd}(0, p)=p \neq 1$
but if $1 \leq x \leq p-1$, then $\operatorname{gcd}(x, p)=1$
Ex: 7 is prime so

$$
\begin{aligned}
& \mathbb{Z}_{7}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\} \\
& \mathbb{Z}_{7}^{x}=\{T, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}
\end{aligned}
$$

Theorem: Let $n \in \mathbb{Z}$ with $n \geqslant 2$.
Then, \mathbb{Z}_{n}^{x} is closed under multiplication.
That is, if $\bar{a}, \bar{b} \in \mathbb{Z}_{n}^{x}$, then $\bar{a} \cdot \bar{b} \in \mathbb{Z}_{n}^{x}$
proof: Let $\bar{a}, \bar{b} \in \mathbb{Z}_{n}^{x}$.
Then, \bar{a} and \bar{b} have multiplicative inverses \bar{a}^{-1} and \bar{b}^{-1}.
So, $\bar{a} \cdot \bar{a}^{-1}=T$ and $\bar{b} \cdot b^{-1}=T$.
Our goal is to show $\bar{a} \cdot \bar{b}$ has a multiplicative inverse and hence is also in \mathbb{Z}_{n}^{x}.
Claim: $(\bar{a} \cdot \bar{b})^{-1}=\bar{b}^{-1} \cdot \bar{a}^{-1}$.

We see this is true since

$$
\begin{aligned}
& (\bar{a} \cdot \bar{b}) \cdot\left(\bar{b}^{-1} \cdot \bar{a}^{-1}\right) \\
= & \bar{a} \cdot \underbrace{\left(\bar{b} \cdot \bar{b}^{-1}\right)}_{T} \cdot \bar{a}^{-1} \\
= & \bar{a} \cdot \bar{a}^{-1} \\
= & T
\end{aligned}
$$

So, $\bar{a} \cdot \bar{b}$ has a multiplicate inverse and hence $\bar{a} \cdot \bar{b} \in \mathbb{Z}_{n}^{x}$

